unit 1.pdf

Unit2and3_user interface with swing.pdf
Unit4Database Connectivity.pdf
UnitSNetwork Programming.pdf
Unit6Java Beans.pdf

Unit7Servlets and JSP.pdf

Unit8RMI and CORBA.pdf

Downloaded from CSIT Tutor

Class

The class is at the core of Java. It is the logical construct upon which the entire Java language is
built because it defines the shape and nature of an object. As such,the class forms the basis for
object-oriented programming in Java. Any concept you wish to implement in a Java program
must be encapsulated within a class.

Perhaps the most important thing to understand about a class is that it defines a

new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an object, and an object is an instance of a class. Because an
object is an instance of a class, you will often see the two words object and instance used
interchangeably.

The general form of class

class classname {
type instance-variablel;
type instance-variable2;
...
type instance-variableN;
type methodnamel(parameter-list) {
// body of method1
}
type methodname2(parameter-list) {
// body of method?2
}
...
type methodnameN(parameter-list) {
// body of methodN

}
}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a
class are called members of the class.

Example of Class
class Box {
double width;
double height;
double depth;
/I compute and return volume
double volume() {
return width * height * depth;
}

/I sets dimensions of box

Prepared by: Navin K. Sharma 1 Java Unit 1

Downloaded from CSIT Tutor

void setDim(double w, double h, double d) {

width = w;
height = h;
depth =d;
}

hy

class BoxDemo {
public static void main(String argsl]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

Il initialize each box
mybox1.setDim(10, 20, 15);
mybox2.setDim(3, 6, 9);

/I get volume of first box
vol = mybox1.volume();
System.out.printIn(*Volume is " + vol);

/I get volume of second box
vol = mybox2.volume();
System.out.printin(*Volume is " + vol);

¥

Creating Objects

When you create a class, you are creating a new data type. You can use this type to
declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an
object. Instead, it is simply a variable that can refer to an object. Second, you must
acquire an actual, physical copy of the object and assign it to that variable. You can do
this using the new operator. The new operator dynamically allocates (that is, allocates at
run time) memory for an object and returns a reference to it. This reference is, more or
less, the address in memory of the object allocated by new.This reference is then stored in
the variable. Thus, in Java, all class objects must be dynamically allocated.

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to
show each step more clearly:

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

Constructors
Java allows objects to initialize themselves when they are created. This automatic

Prepared by: Navin K. Sharma 2 Java Unit 1

Downloaded from CSIT Tutor

initialization is performed through the use of a constructor. A constructor initializes an
object immediately upon creation. It has the same name as the class in which it resides
and is syntactically similar to a method. Once defined, the constructor is automatically
called immediately after the object is created, before the new operator completes.

/* Here, Box uses a constructor to initialize the dimensions of a box.*/

class Box {
double width;
double height;
double depth;

/[This is the constructor for Box.

Box() {
System.out.printin("Constructing Box");
width = 10;

height = 10;

depth = 10;

}

/I compute and return volume
double volume() {
return width * height * depth;

¥
¥

class BoxDemo6 {
public static void main(String args[]) {

Il declare, allocate, and initialize Box objects
Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

/I get volume of first box
vol = mybox1.volume();
System.out.printIn(*Volume is " + vol);

/I get volume of second box
vol = mybox2.volume();
System.out.printIn(*Volume is " + vol);

}

When this program is run, it generates the following results:
Constructing Box
Constructing Box

Prepared by: Navin K. Sharma 3 Java Unit 1

Downloaded from CSIT Tutor

Volume is 1000.0
Volume is 1000.0

Overloading Methods

In Java it is possible to define two or more methods within the same class that share the
same name, as long as their parameter declarations are different. When this is the case,
the methods are said to be overloaded, and the process is referred to as method
overloading. Method overloading is one of the ways that Java implements
polymorphism.

When an overloaded method is invoked, Java uses the type and/or number of arguments
as its guide to determine which version of the overloaded method to actually call. Thus,
overloaded methods must differ in the type and/or number of their parameters. While
overloaded methods may have different return types, the return type alone is insufficient
to distinguish two versions of a method. When Java encounters a call to an overloaded
method, it simply executes the version of the method whose parameters match the
arguments used in the call.

/I Demonstrate method overloading.
class OverloadDemo {
void test() {
System.out.printin("No parameters™);

/I Overload test for one integer parameter.
void test(int a) {
System.out.printin("a: " + a);

¥

I/l Overload test for two integer parameters.
void test(int a, int b) {
System.out.printin("faand b: " +a+"" + b);

¥

Il overload test for a double parameter
double test(double a) {
System.out.printin("double a: " + a);
return a*a;

k
¥

class Overload {

public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
double result;

/I call all versions of test()

Prepared by: Navin K. Sharma 4 Java Unit 1

Downloaded from CSIT Tutor

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.printin("Result of ob.test(123.25): " + result);

¥
¥

This program generates the following output:
No parameters

a: 10

aand b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

Overloading Constructors
In addition to overloading normal methods, one can also overload constructors.

/* Here, Box defines three constructors to initializethe dimensions of a box various
ways.*/
class Box {

double width;

double height;

double depth;

/I constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;

height = h;

depth =d;

}

/I constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

/I constructor used when cube is created
Box(double len) {

width = height = depth = len;

}

/I compute and return volume
double volume() {

Prepared by: Navin K. Sharma 5 Java Unit 1

Downloaded from CSIT Tutor

return width * height * depth;
}

class OverloadCons {
public static void main(String args[]) {

/I create boxes using the various constructors
Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

/I get volume of first box
vol = mybox1.volume();
System.out.printin(*Volume of mybox1 is " + vol);

/I get volume of second box
vol = mybox2.volume();
System.out.printIn(*Volume of mybox2 is " + vol);

/I get volume of cube
vol = mycube.volume();
System.out.printIn(*Volume of mycube is " + vol);

¥
¥

The output produced by this program is shown here:
Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

Static Variables and Methods

There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally a class member must be accessed
only in conjunction with an object of its class. However, it is possible to create a member
that can be used by itself, without reference to a specific instance. To create such a
member, precede its declaration with the keyword static. When a member is declared
static, it can be accessed before any objects of its class are created, and without reference
to any object. You can declare both methods and variables to be static.

The most common example of a static member is main(). main() is declared as static
because it must be called before any objects exist. Instance variables declared as static
are, essentially, global variables. When objects of its class are declared, no copy of a
static variable is made. Instead, all instances of the class share the same static variable.

Prepared by: Navin K. Sharma 6 Java Unit 1

Downloaded from CSIT Tutor

Methods declared as static have several restrictions:

m They can only call other static methods.

m They must only access static data.

m They cannot refer to this or super in any way. (The keyword super relates to
inheritance.)

If you need to do computation in order to initialize your static variables, you can declare
a static block which gets executed exactly once, when the class is first loaded.

/I Demonstrate static variables, methods, and blocks.
class UseStatic {

static inta = 3;

static int b;

static void meth(int x) {
System.out.printin("x =" + x);
System.out.printin(a =" + a);
System.out.printin("b =" + b);
¥

static {

System.out.printIn("Static block initialized.");
b=a*4;,

}

public static void main(String args[]) {
meth(42);

}

}

Here is the output of the program:
Static block initialized.

X =42

a=3

b=12

As soon as the UseStatic class is loaded, all of the static statements are run. First, a is set
to 3, then the static block executes (printing a message), and finally, b is initialized to a *
4 or 12. Then main() is called, which calls meth(), passing 42 to x. The three printin()
statements refer to the two static variables a and b, as well as to the local variable x.

Outside of the class in which they are defined, static methods and variables can be used
independently of any object. To do so, you need only specify the name of their class

followed by the dot operator.
classname.method()

Prepared by: Navin K. Sharma 7 Java Unit 1

Downloaded from CSIT Tutor

Example
Inside main(), the static method callme() and the static variable b are accessed outside of
their class.

class StaticDemo {
static int a = 42;
static int b = 99;
static void callme() {
System.out.printin("a =" + a);
}
}
class StaticByName {
public static void main(String args|[]) {

StaticDemao.callme();
System.out.printin("b =" + StaticDemo.b);

¥
¥

Here is the output of this program:
a=42
b =99

Final Variables

A variable can be declared as final. Doing so prevents its contents from being modified.
This means that you must initialize a final variable when it is declared.

(In this usage, final is similar to const in C/C++/C#.) For example:

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

final int FILE_SAVE = 3;

final int FILE_SAVEAS = 4;

final int FILE_QUIT =5;

Arrays
In Java Arrays are implemented as objects.

/I This program demonstrates the length array member.

class Length {

public static void main(String args[]) {

int al[] = new int[10];
inta2[1={3,5,7,1,8,99, 44, -10};
inta3[]1=4{4,3, 2, 1};
System.out.printin("length of al is " + al.length);
System.out.printin("length of a2 is " + a2.length);
System.out.printin("length of a3 is " + a3.length);

Prepared by: Navin K. Sharma 8 Java Unit 1

Downloaded from CSIT Tutor

by

¥
This program displays the following output:

length of al is 10
length of a2 is 8
length of a3 is 4

Inheritance

Inheritance is one of the cornerstones of object-oriented programming because it allows
the creation of hierarchical classifications. Using inheritance, you can create a general
class that defines traits common to a set of related items. This class can then be inherited
by other, more specific classes, each adding those things that are unique to it. In the
terminology of Java, a class that is inherited is called a superclass. The class that does
the inheriting is called a subclass. Therefore, a subclass is a specialized version of a
superclass. It inherits all of the instance variables and methods defined by the superclass
and adds its own, unique elements.

To inherit a class, you simply incorporate the definition of one class into another by using
the extends keyword.

/I A simple example of inheritance.

/I Create a superclass.

class A {

int i, j:

void showij() {

System.out.printin("i and j: " + i+ " " + j);
}
}

/I Create a subclass by extending class A.
class B extends A {
int k;
void showk() {
System.out.printin("k: " + K);
}
void sum() {
System.out.printin("i+j+k: " + (i+j+k));
}
}

class Simplelnheritance {
public static void main(String args[]) {
A superOb = new A();

Prepared by: Navin K. Sharma 9 Java Unit 1

Downloaded from CSIT Tutor

B subOb = new B();

/I The superclass may be used by itself.
superOb.i = 10;

superOb.j = 20;
System.out.printIn("Contents of superOb: ");
superOb.showij();

System.out.printin();

/I The subclass has access to all public members of its superclass.
subOb.i =7;

subOb.j = 8;

subOb.k = 9;

System.out.printIn("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.printin();

System.out.printIn("Sum of i, j and k in subOb:");

subOb.sum();

¥
¥

The output from this program is shown here:
Contents of superOb:

iand j: 10 20

Contents of subOb:

iandj: 78

k: 9

Sum of i, jand k in subOb:

i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is
why subOb can access i and j and call showij(). Also, inside sum(), i and j can be
referred to directly, as if they were part of B.

Note:Although a subclass includes all of the members of its superclass, it cannot access
those members of the superclass that have been declared as private.

Super Keyword
super has two general forms.
e The first calls the superclass’ constructor.
e The second is used to access a member of the superclass that has been hidden by a
member of a subclass.

Using super to Call Superclass Constructors

Prepared by: Navin K. Sharma 10 Java Unit 1

Downloaded from CSIT Tutor

A subclass can call a constructor method defined by its superclass by use of the following
form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the superclass.
super() must always be the first statement executed inside a subclass’ constructor.

Example

class Box {
private double width;
private double height;
private double depth;

/I construct clone of an object

Box(Box ob) { /I pass object to constructor
width = ob.width;

height = ob.height;

depth = ob.depth;

}

/I constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;

height = h;

depth =d;

}

/I constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

/I constructor used when cube is created
Box(double len) {

width = height = depth = len;

}

/I compute and return volume
double volume() {
return width * height * depth;

¥
¥

/I BoxWeight now fully implements all constructors.
class BoxWeight extends Box {

Prepared by: Navin K. Sharma 11 Java Unit 1

Downloaded from CSIT Tutor

double weight; // weight of box

/I construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);

weight = ob.weight;

}

Il constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor

weight = m;

}

/I default constructor
BoxWeight() {
super();

weight = -1;

}

/I constructor used when cube is created
BoxWeight(double len, double m) {

super(len);
weight = m;
}

¥

class DemoSuper {
public static void main(String args[]) {
BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1);
double vol;
vol = mybox1.volume();
System.out.printIn(*Volume of mybox1 is " + vol);
System.out.printin(*Weight of mybox1 is " + mybox1.weight);
System.out.printin();
vol = mybox2.volume();
System.out.printIn(*Volume of mybox2 is " + vol);
System.out.printIn("Weight of mybox2 is " + mybox2.weight);
System.out.printin();
vol = mybox3.volume();
System.out.printIn(*Volume of mybox3 is " + vol);
System.out.printIn("Weight of mybox3 is " + mybox3.weight);

Prepared by: Navin K. Sharma 12 Java Unit 1

Downloaded from CSIT Tutor

System.out.printin();
vol = myclone.volume();
System.out.printin("Volume of myclone is " + vol);
System.out.printin(*Weight of myclone is " + myclone.weight);
System.out.printin();
vol = mycube.volume();
System.out.printin(*Volume of mycube is " + vol);
System.out.printin(*Weight of mycube is " + mycube.weight);
System.out.printin();
}

}

This program generates the following output:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

Volume of mycube is 27.0

Weight of mycube is 2.0

A Second Use for super

This second form of super is most applicable to situations in which member names of a
subclass hide members by the same name in the superclass.

This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

Consider this simple

/I Using super to overcome name hiding.
class A {

int i;

int j;

}

/I Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A
B(int a, int b,int ¢) {
super.i=a;//iin A
i=b;//iinB

Prepared by: Navin K. Sharma 13 Java Unit 1

Downloaded from CSIT Tutor

J=c;

¥

void show() {
System.out.printIn("i in superclass: " + super.i);
System.out.printIn("i in subclass: " + i);
}
}
class UseSuper {
public static void main(String args[]) {
B subOb = new B(1, 2,3);
subOb.show();

¥
¥

This program displays the following:
I in superclass: 1
i in subclass: 2

Package
Packages are containers for classes that are used to keep the class name space

compartmentalized. For example, a package allows you to create a class named List,
which you can store in your own package without concern that it will collide with some
other class named List stored elsewhere. Packages are stored in a hierarchical manner and
are explicitly imported into new class definitions.

The package is both a naming and a visibility control mechanism. You can define
classes inside a package that are not accessible by code outside that package. You can
also define class members that are only exposed to other members of the same
package.This allows your classes to have intimate knowledge of each other, but not
expose that knowledge to the rest of the world.

Defining a package

package pkg_name;

Here,package is a keyword and pkg_name is the name of the package. For example, the
following statement creates a package called MyPackage.

package MyPackage;

In Java a hierarchy of packages can be created. To do so, simply separate each package
name from the one above it by use of a period. The general form of a multileveled
package statement is shown here:

package pkgl[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of Java development system. For
example, a package declared as

Prepared by: Navin K. Sharma 14 Java Unit 1

Downloaded from CSIT Tutor

package java.awt.image;

needs to be stored in java\awt\image on the Windows file system.

Access Modifiers

The three access specifiers, private, public, and protected, provide a variety of ways to
produce the many levels of access required by these categories. Table below sums up the

interactions

Mo

Public
\t.'l:'.";

Yes

Yes

Yes

Yes

Private No modifier

Same class Yes Yes
Same package No Yes
subclass

Same package Mo Yes
non-subclass

Different Mo Mo
package

subclass

Different Mo M
package

non-subclass

Table 91 Class Member Access|

An Access Example

/[This is file Protection.java:

package p1;
public class Protection {
intn=1;

private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;

public Protection() {

System.out.printIn(""base constructor");

System.out.printin("n ="+ n);

System.out.printIn("n_pri =" + n_pri);

System.out.printin("n_pro =" + n_pro);
System.out.printin("n_pub =" + n_pub);

¥
¥

/[This is file Derived.java:

package p1;
class Derived extends Protection {
Derived() {

System.out.printIn("derived constructor");

Prepared by: Navin K. Sharma

Downloaded from CSIT Tutor

15

Java Unit 1

ky

System.out.printin("n ="+ n);

/I class only

/I System.out.printin("n_pri ="+ n_pri);
System.out.printin("n_pro =" + n_pro);
System.out.printIn("n_pub =" + n_pub);

hy

/[This is file SamePackage.java:
package p1;
class SamePackage {

¥

SamePackage() {

Protection p = new Protection();
System.out.printIn("same package constructor™);
System.out.printIn(*n =" + p.n);

/I class only

/I System.out.printIn(*n_pri =" + p.n_pri);
System.out.printIn(*n_pro =" + p.n_pro);
System.out.printin(*n_pub =" + p.n_pub);

}

/[This is file Protection2.java:
package p2;
class Protection2 extends pl.Protection {

}

Protection2() {

System.out.printin("derived other package constructor");
/I class or package only

/I System.out.printin(*n =" + n);

/I class only

/I System.out.printIn(*n_pri ="+ n_pri);
System.out.printin("n_pro =" + n_pro);
System.out.printin("n_pub =" + n_pub);

¥

/[This is file OtherPackage.java:
package p2;
class OtherPackage {

OtherPackage() {

pl.Protection p = new pl.Protection();
System.out.printin("other package constructor");
/I class or package only

/I System.out.printin(*n =" + p.n);

/I class only

Prepared by: Navin K. Sharma 16 Java Unit 1

Downloaded from CSIT Tutor

/I System.out.printin(*n_pri =" + p.n_pri);
/I class, subclass or package only
/I System.out.printIn(*n_pro =" + p.n_pro);
System.out.printin("n_pub =" + p.n_pub);
}
}

/I This is file Demo.java in package p1.

package p1;

public class Demo {
public static void main(String args[]) {
Protection ob1 = new Protection();
Derived ob2 = new Derived();
SamePackage ob3 = new SamePackage();

¥
¥

/IThis is file Demo.java in package p2.

package p2;

public class Demo {
public static void main(String args[]) {
Protection2 obl1 = new Protection2();
OtherPackage ob2 = new OtherPackage();

¥
¥

Importing Packages

Classes within packages must be fully qualified with their package name or names.It
could become tedious to type in the long dot-separated package path name for every class
you want to use. For this reason, Java includes the import statement to bring certain
classes, or entire packages, into visibility. Once imported, a class can be referred to
directly, using only its name.

The import statement is a convenience to the programmer and is not technically needed to
write a complete Java program. If you are going to refer to a few dozen classes in your
application, however, the import statement will save a lot of typing.

In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions. This is the general form of the
import statement:

import pkgl[.pkg2].(classname|*);

Here, pkgl is the name of a top-level package, and pkg2 is the name of a subordinate

package inside the outer package separated by a dot (.). There is no practical limit on the
depth of a package hierarchy, except that imposed by the file system. Finally, you specify

Prepared by: Navin K. Sharma 17 Java Unit 1

Downloaded from CSIT Tutor

either an explicit classname or a star (*), which indicates that the Java compiler should
import the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

Any place you use a class name, you can use its fully qualified name, which includes its
full package hierarchy. For example, this fragment uses an import statement:

import java.util.*;

class MyDate extends Date {

}

The same example without the import statement looks like this:
class MyDate extends java.util.Date {

}

NOTE: When a package is imported, only those items within the package declared as
public will be available to non-subclasses in the importing code.

For example, if you want the Balance class of the package MyPack to be available as a
stand-alone class for general use outside of MyPack, then you will need to declare it as
public and put it into its own file, as shown here:

package MyPack;
/* Now, the Balance class, its constructor, and its
show() method are public. This means that they can
be used by non-subclass code outside their package.
*/
public class Balance {

String name;

double bal,

public Balance(String n, double b) {
name = n;

bal = b;

}

public void show() {

if(bal<0)

System.out.print("-->");
System.out.printin(name + ": $" + bal);

}

Prepared by: Navin K. Sharma 18 Java Unit 1

Downloaded from CSIT Tutor

¥

As you can see, the Balance class is now public. Also, its constructor and its show()
method are public, too. This means that they can be accessed by any type of code outside
the MyPack package. For example, here TestBalance imports MyPack and is then able
to make use of the Balance class:

import MyPack.*;

class TestBalance {
public static void main(String args[]) {
/* Because Balance is public, you may use Balance
class and call its constructor. */
Balance test = new Balance(™J. J. Jaspers”, 99.88);
test.show(); // you may also call show()
}
}

Experiment- Remove the public specifier from the Balance class and then try compiling
TestBalance. As explained, errors will result.

Interfaces

Interfaces are syntactically similar to classes, but they lack instance variables, and their
methods are declared without any body. In practice, this means that you can define
interfaces which don’t make assumptions about how they are implemented. Once it is
defined, any number of classes can implement an interface. Also, one class can
implement any number of interfaces.

Using interface, you can specify what a class must do, but not how it does it.

To implement an interface, a class must create the complete set of methods defined by the
interface. However, each class is free to determine the details of its own implementation.
By providing the interface keyword, Java allows you to fully utilize the “one interface,
multiple methods” aspect of polymorphism. Interfaces are designed to support dynamic
method resolution at run time. Normally, in order for a method to be called from one
class to another, both classes need to be present at compile time so the Java compiler can
check to ensure that the method signatures are compatible.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name {

Prepared by: Navin K. Sharma 19 Java Unit 1

Downloaded from CSIT Tutor

return-type method-namel(parameter-list);
return-type method-name2(parameter-list);
type final-varnamel = value;

type final-varname2 = value;

...

return-type method-nameN(parameter-list);
type final-varnameN = value;

}

Here, access is either public or not used. When no access specifier is included, then
default access results, and the interface is only available to other members of the package
in which it is declared. When it is declared as public, the interface can be used by any
other code. name is the name of the interface, and can be any valid identifier.

Notice that the methods which are declared have no bodies. They end with a semicolon
after the parameter list. They are, essentially, abstract methods; there can be no default
implementation of any method specified within an interface. Each class that includes an
interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final and
static, meaning they cannot be changed by the implementing class. They must also be
initialized with a constant value. All methods and variables are implicitly public if the
interface, itself, is declared as public.

Implementing Interface

interface Callback {
void callback(int param);

--Save this file as Callback.java

class Client implements Callback {
/I Implement Callback's interface

public void callback(int p) {
System.out.printin("callback called with " + p);

}

void nonlfaceMeth() {
System.out.printIn("Classes that implement interfaces " +
"may also define other members, t00.");

¥
¥

/I Another implementation of Callback.

Prepared by: Navin K. Sharma 20 Java Unit 1

Downloaded from CSIT Tutor

class AnotherClient implements Callback {
/[Implement Callback's interface

public void callback(int p) {
System.out.printIn(" Another version of callback");
System.out.printIn("p squared is " + (p*p));

¥
¥

class Testlface {
public static void main(String args[]) {
Client obl1 = new Client();
AnotherClient ob2 = new AnotherClient();
obl.callback(42);
ob2.callback(42);

¥
¥

The output from this program is shown here:
callback called with 42

Another version of callback

p squared is 1764

Exception-Handling

An exception is an abnormal condition that arises in a code sequence at run time. In
other words, an exception is a run-time error. In computer languages that do not
support exception handling, errors must be checked and handled manually—typically
through the use of error codes, and so on. This approach is as cumbersome as it is
troublesome.Java’s exception handling avoids these problems and, in the process, brings
run-time error management into the object-oriented world.

Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally. Briefly, here is how they work. Program statements that you want to monitor for
exceptions are contained within a try block. If an exception occurs within the try block, it
is thrown. Your code can catch this exception (using catch) and handle it in some rational
manner. System-generated exceptions are automatically thrown by the Java run-time
system. To manually throw an exception, use the keyword throw. Any exception that is
thrown out of a method must be specified as such by a throws clause. Any code that
absolutely must be executed before a method returns is put in a finally block.

General form of an exception-handling block:

try {

Prepared by: Navin K. Sharma 21 Java Unit 1

Downloaded from CSIT Tutor

Il block of code to monitor for errors

}

catch (ExceptionTypel exOb) {

I exception handler for ExceptionTypel
}

catch (ExceptionType2 exOb) {

I exception handler for ExceptionType2
}

...

finally {

/I block of code to be executed before try block ends

¥

Here, ExceptionType is the type of exception that has occurred.

Uncaught Exceptions

class Exc0 {
public static void main(String args[]) {
intd=0;
inta=42/d;
}
}

When the Java run-time system detects the attempt to divide by zero, it constructs a new
exception object and then throws this exception. This causes the execution of Exc0 to
stop, because once an exception has been thrown, it must be caught by an exception
handler and dealt with immediately. In this example, we haven’t supplied any exception
handlers of our own, so the exception is caught by the default handler provided by the
Java run-time system.

Here is the output generated when this example is executed.
java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Using try and catch

Although the default exception handler provided by the Java run-time system is useful for
debugging, you will usually want to handle an exception yourself. Doing so provides two
benefits.

First, it allows you to fix the error.

Second, it prevents the program from automatically terminating.

To guard against and handle a run-time error, simply enclose the code that you want to
monitor inside a try block. Immediately following the try block, include a catch clause
that specifies the exception type that you wish to catch.

Prepared by: Navin K. Sharma 22 Java Unit 1

Downloaded from CSIT Tutor

class Exc2 {
public static void main(String args[]) {
intd, a;
try { // monitor a block of code.
d=0;
a=42/d;
System.out.printIn("This will not be printed.");
} catch (ArithmeticException e) { // catch divide-by-zero error
System.out.printIn("Division by zero.");
}
System.out.printIn(After catch statement.");
}
}

This program generates the following output:
Division by zero.
After catch statement.

Notice that the call to printin() inside the try block is never executed. Once an exception
is thrown, program control transfers out of the try block into the catch block.

Put differently, catch is not “called,” so execution never “returns” to the try block from a
catch. Thus, the line “This will not be printed.” is not displayed. Once the catch statement
has executed, program control continues with the next line in the program following the
entire try/catch mechanism

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened.

For example, in the next program each iteration of the for loop obtains two random
integers. Those two integers are divided by each other, and the result is used to divide the
value 12345. The final result is put into a. If either division operation causes a divide-by-
zero error, it is caught, the value of a is set to zero, and the program continues.

// Handle an exception and move on.
import java.util.Random;
class HandleError {
public static void main(String args[]) {
int a=0, b=0, c=0;
Random r = new Random();
for(int i=0; i<32000; i++) {
try {
b = r.nextInt();
¢ = r.nextInt();
a=12345/ (blc);

Prepared by: Navin K. Sharma 23 Java Unit 1

Downloaded from CSIT Tutor

} catch (ArithmeticException e) {
System.out.printin("Division by zero.");
a=0; // set ato zero and continue

}
System.out.printin("a: " + a);
}
}
}
throw

So far, you have only been catching exceptions that are thrown by the Java run-time
system. However, it is possible for your program to throw an exception explicitly, using
the throw statement. You can throw exceptions yourself by using the throw statement.
The general form of throw is :

throw Throwablelnstance;

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of the exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected, and
so on. If no matching catch is found, then the default exception handler halts the program
and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that catches
the exception rethrows it to the outer handler.

// Demonstrate throw.

class ThrowDemo {
static void demoproc() {
try {
throw new NullPointerException("demo™);
} catch(NullPointerException e) {
System.out.printin("Caught inside demoproc."”);
throw e; // rethrow the exception
}

}

public static void main(String args[]) {
try {
demoproc();
} catch(NullPointerException e) {
System.out.printin("Recaught: " + e);

¥
¥
¥

Prepared by: Navin K. Sharma 24 Java Unit 1

Downloaded from CSIT Tutor

Here is the resulting output:
Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

throws

If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You
do this by including a throws clause in the method’s declaration. A throws clause lists the
types of exceptions that a method might throw.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{
// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.
Example

class ThrowsDemo {
static void throwOne() throws IllegalAccessException {
System.out.printIn("Inside throwOne.");
throw new lllegal AccessException("demo™);

}

public static void main(String args[]) {
try {
throwOne();
} catch (lllegal AccessException e) {
System.out.printin("Caught " + e);
}

}

}

Here is the output generated by running this example program:
inside throwOne
caught java.lang.lllegal AccessException: demo

finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path

that alters the normal flow through the method. Depending upon how the method is
coded, it is even possible for an exception to cause the method to return prematurely.
This could be a problem in some methods. For example, if a method opens a file upon

Prepared by: Navin K. Sharma 25 Java Unit 1

Downloaded from CSIT Tutor

entry and closes it upon exit, then you will not want the code that closes the file to be
bypassed by the exception-handling mechanism. The finally keyword is designed to
address this contingency.

finally creates a block of code that will be executed after a try/catch block has completed
and before the code following the try/catch block. The finally block will execute whether
or not an exception is thrown. If an exception is thrown, the finally block will execute
even if no catch statement matches the exception. Any time a method is about to return to
the caller from inside a try/catch block, via an uncaught exception or an explicit return
statement, the finally clause is also executed just before the method returns. This can be
useful for closing file handles and freeing up any other resources that might have
been allocated at the beginning of a method with the intent of disposing of them
before returning.

Each try statement requires at least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways, none
without executing their finally clauses:

// Demonstrate finally.

class FinallyDemo {

/I Through an exception out of the method.
static void procA() {
try {
System.out.printin("inside procA");
throw new RuntimeException(*"demo");

} finally {
System.out.printin("procA's finally");

¥

/I Return from within a try block.
static void procB() {
try {
System.out.printin("inside procB");
return;
} finally {
System.out.printin("procB's finally™);
}
}

/I Execute a try block normally.
static void procC() {

try {
System.out.printin("inside procC");
} finally {
System.out.printin("procC's finally");
}
Prepared by: Navin K. Sharma 26 Java Unit 1

Downloaded from CSIT Tutor

¥
public static void main(String args[]) {

try {

procA();

} catch (Exception e) {
System.out.printIn("Exception caught™);
}

procB();

procC();

¥
¥

In this example, procA() prematurely breaks out of the try by throwing an exception. The
finally clause is executed on the way out. procB()’s try statement is exited via a return
statement. The finally clause is executed before procB() returns. In procC(), the try
statement executes normally, without error. However, the finally block is still executed.

If a finally block is associated with a try, the finally block will be executed upon
conclusion of the try.

Here is the output generated by the preceding program:
inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Multithreading

Unlike most other computer languages, Java provides built-in support for multithreaded
programming. A multithreaded program contains two or more parts that can run
concurrently. Each part of such a program is called a thread, and each thread defines a
separate path of execution. Thus, multithreading is a specialized form of multitasking.

Multitasking threads require less overhead than multitasking processes. Processes are
heavyweight tasks that require their own separate address spaces. Interprocess
communication is expensive and limited. Context switching from one process to another
is also costly. Threads, on the other hand, are lightweight. They share the same address
space and cooperatively share the same heavyweight process. Interthread communication
is inexpensive, and context switching from one thread to the next is low cost.

Multithreading enables to write very efficient programs that make maximumn use of the
CPU, because idle time can be kept to a minimum.

The Thread Class and the Runnable Interface

Prepared by: Navin K. Sharma 27 Java Unit 1

Downloaded from CSIT Tutor

Java’s multithreading system is built upon the Thread class, its methods, and its
companion interface, Runnable. To create a new thread, program will either extend
Thread or implement the Runnable interface. The Thread class defines several
methods that help manage threads. The ones that will be used in this chapter are shown

here:

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.
join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.
start Start a thread by calling its run method.

fig. The methods in the thread class
The Main Thread
When a Java program starts up, one thread begins running immediately. This is usually
called the main thread of your program, because it is the one that is executed when your
program begins. The main thread is important for two reasons:
m It is the thread from which other “child” threads will be spawned.
m Often it must be the last thread to finish execution because it performs various
shutdown actions

Although the main thread is created automatically when program is started, it can be
controlled through a Thread object. To do so, you must obtain a reference to it by calling
the method currentThread(), which is a public static member of Thread. It general form
is shown here:

static Thread currentThread()
This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.

/I Controlling the main Thread.

class CurrentThreadDemo {
public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.printin("Current thread: " +t);
/I change the name of the thread
t.setName("My Thread");
System.out.printin("After name change: " + t);
try {
for(intn=5;n>0;n--) {
System.out.printIn(n);
Thread.sleep(1000);

}

Prepared by: Navin K. Sharma 28 Java Unit 1

Downloaded from CSIT Tutor

} catch (InterruptedException e) {
System.out.printin(*Main thread interrupted");

¥
¥
¥

Here is the output generated by this program:
Current thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]

5
4
3
2

[EEN

By default, the name of the main thread is main. Its priority is 5, which is the default
value, and main is also the name of the group of threads to which this thread
belongs.

The sleep() method causes the thread from which it is called to suspend execution for
the specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may
throw an InterruptedException.

Creating a Thread

In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

m You can implement the Runnable interface.

m You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on any
object that implements Runnable. To implement Runnable, a class need only implement a
single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just
like the main thread can.

After you create a class that implements Runnable, you will instantiate an object of
type Thread from within that class.

After the new thread is created, it will not start running until you call its start() method,
which is declared within Thread. In essence, start() executes a call to run().

Prepared by: Navin K. Sharma 29 Java Unit 1

Downloaded from CSIT Tutor

/I Create a second thread.

class NewThread implements Runnable {

Thread t;

NewThread() { I/ Create a new, second thread
t = new Thread(this, "Demo Thread");
System.out.printin("Child thread: " + t);

t.start(); // Start the thread

ky

/[This is the entry point for the second thread.
public void run() {

try {

for(inti=5;i>0;i-){
System.out.printin("Child Thread: " + i);
Thread.sleep(500);

}

} catch (InterruptedException e) {
System.out.printin("Child interrupted.”);

}

System.out.printIn("Exiting child thread.”);
}

}

class ThreadDemo {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(inti=5;i>0;i-){
System.out.printin(*Main Thread: " + i);
Thread.sleep(1000);

}

} catch (InterruptedException e) {
System.out.printin("Main thread interrupted.”);

System.out.printIn(*Main thread exiting.");

k
¥

The output produced by this program is as follows:
Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Prepared by: Navin K. Sharma 30 Java Unit 1

Downloaded from CSIT Tutor

Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

Passing this as the first argument indicates that you want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution
beginning at the run() method. This causes the child thread’s for loop to begin. After
calling start(), NewThread’s constructor returns to main(). When the main thread
resumes, it enters its for loop. Both threads continue running, sharing the CPU, until their
loops finish.

Creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread.
However, your program can spawn as many threads as it needs. For example, the
following program creates three child threads:

/I Create multiple threads.

class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread(String threadname) {
name = threadname;

t = new Thread(this, name);
System.out.printin(*New thread: " +t);
t.start(); // Start the thread

}

[l This is the entry point for thread.

public void run() {

try {

for(inti=5;i>0;i-){
System.out.printin(name + ": " + i);
Thread.sleep(1000);

}

} catch (InterruptedException e) {
System.out.printin(name + "Interrupted");

System.out.println(name + " exiting.");

¥
¥

Prepared by: Navin K. Sharma 31 Java Unit 1

Downloaded from CSIT Tutor

class MultiThreadDemo {
public static void main(String args[]) {
new NewThread("One"); // start threads
new NewThread("Two");
new NewThread("Three");
try {
[l wait for other threads to end
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.printin(*Main thread Interrupted");
}
System.out.printIn("Main thread exiting.");
}
}

The output from this program is shown here:
New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Three: 3

Two: 3

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call
to sleep(10000) in main(). This causes the main thread to sleep for ten seconds
and ensures that it will finish last.

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding
examples, this is accomplished by calling sleep() within main(), with a long

Prepared by: Navin K. Sharma 32 Java Unit 1

Downloaded from CSIT Tutor

enough delay to ensure that all child threads terminate prior to the main
thread.However, this is hardly a satisfactory solution. Fortunately, Thread
provides a means by which you can answer this question. Two ways exist to
determine whether a thread has finished. First, you can call isAlive() on the
thread.

The isAlive() method returns true if the thread upon which it is called is still
running. It returns false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly
use to wait for a thread to finish is called join(), shown here:

final void join(') throws InterruptedException

This method waits until the thread on which it is called terminates.
Here is an improved version of the preceding example that uses join() to ensure
that the main thread is the last to stop. It also demonstrates the isAlive() method.

//'Using join() to wait for threads to finish.
class NewThread implements Runnable {
String name; // name of thread
Thread t;
NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.printin("New thread: " +t);
t.start(); // Start the thread
}
/I This is the entry point for thread.
public void run() {
try {
for(inti=5;i>0;i-){
System.out.printin(name + ": " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.printin(name + " interrupted.”);

System.out.println(name + " exiting.");
}
}

class DemoJoin {

public static void main(String args[]) {
NewThread obl = new NewThread("One");
NewThread ob2 = new NewThread("Two");
NewThread ob3 = new NewThread("Three");

Prepared by: Navin K. Sharma 33 Java Unit 1

Downloaded from CSIT Tutor

System.out.printin("Thread One is alive: "+ obl.t.isAlive());
System.out.printin("Thread Two is alive: "+ ob2.t.isAlive());
System.out.printin("Thread Three is alive: "+ ob3.t.isAlive());
[l wait for threads to finish

try {

System.out.printIn("Waiting for threads to finish.");
obl.t.join();

ob2.t.join();

ob3.t.join();

} catch (InterruptedException e) {

System.out.printin("Main thread Interrupted");

}

System.out.printin("Thread One is alive: "+ obl.t.isAlive());
System.out.printIn("Thread Two is alive: "+ ob2.t.isAlive());
System.out.printIn("Thread Three is alive: "+ ob3.t.isAlive());
System.out.printin("Main thread exiting.");

¥
¥

Sample output from this program is shown here:
New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true

Thread Two is alive: true

Thread Three is alive: true
Waiting for threads to finish.
One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1

Two: 1

Three: 1

Two exiting.

Three exiting.

One exiting.

Prepared by: Navin K. Sharma 34 Java Unit 1

Downloaded from CSIT Tutor

Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped
executing.

Synchronization

When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. The process by which
this is achieved is called synchronization. As you will see, Java provides unique,
language-level support for it.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor
associated with them. To enter an object’s monitor, just call a method that has been
modified with the synchronized keyword. While a thread is inside a synchronized
method, all other threads that try to call it (or any other synchronized method) on
the same instance have to wait. To exit the monitor and relinquish control of the object
to the next waiting thread, the owner of the monitor simply returns from the synchronized
method.

/I This program is not synchronized.
class Callme {

void call(String msg) {

System.out.print("[" + msQ);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.printin("Interrupted");

¥
System.out.printin(*1");

class Caller implements Runnable {
String msg;
Callme target;
Thread t;
public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread(this);
t.start();

}

Prepared by: Navin K. Sharma 35 Java Unit 1

Downloaded from CSIT Tutor

public void run() {
target.call(msg);

¥

}

class Synch {
public static void main(String args[]) {
Callme target = new Callme();
Caller obl = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");
[l wait for threads to end
try {
obl.t.join();
ob2.t.join();
ob3.t.join();
} catch(InterruptedException e) {
System.out.printin("Interrupted");

¥
¥

Here is the output produced by this program:
Hello[Synchronized[World]

]

NOTE-Since the Call method is not synchronized more than one thread can access this method
simultenously and result in the Race Condition.
To prevent from the race condition precede the call() with the keyword
synchronized and analyze the output.

class Callme {
synchronized void call(String msg) {

After synchronized has been added to call(), the output of the program is as follows:
[Hello]

[Synchronized]

[World]

Suspending, Resuming, and Stopping Threads Using Java 2
wait()-method is invoked to suspend the execution of the thread.
notify()-method is invoked to wake up the thread.

Prepared by: Navin K. Sharma 36 Java Unit 1

Downloaded from CSIT Tutor

/I Suspending and resuming a thread for Java 2

class NewThread implements Runnable {
String name; // name of thread
Thread t;
boolean suspendFlag;
NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.printin("New thread: " +t);
suspendFlag = false;
t.start(); // Start the thread

}

I/ This is the entry point for thread.

public void run() {
try {
for(inti=15;i>0;i--){
System.out.printin(name + ": " + i);
Thread.sleep(200);
synchronized(this) {
while(suspendFlag) {
wait();
}
}

}
} catch (InterruptedException e) {

System.out.printin(name + " interrupted.”);

System.out.println(name + " exiting.");

}
void mysuspend() {

suspendFlag = true;
}

synchronized void myresume() {
suspendFlag = false;

notify();
}
}
class SuspendResume {
public static void main(String args[]) {

NewThread obl = new NewThread("One");
NewThread ob2 = new NewThread("Two");

try {
Thread.sleep(1000);
obl.mysuspend();

Prepared by: Navin K. Sharma 37 Java Unit 1

Downloaded from CSIT Tutor

¥

System.out.printin("Suspending thread One");
Thread.sleep(1000);

obl.myresume();
System.out.printIn("Resuming thread One");
ob2.mysuspend();
System.out.printin("Suspending thread Two");
Thread.sleep(1000);

ob2.myresume();
System.out.printIn("Resuming thread Two");
} catch (InterruptedException e) {
System.out.printin("Main thread Interrupted");
}

[l wait for threads to finish

try {

System.out.printin("Waiting for threads to finish.");
obl.t.join();

ob2.t.join();

} catch (InterruptedException e) {
System.out.printin("Main thread Interrupted™);

}
System.out.printIn("Main thread exiting.");

Sample output from this program is shown here:
New thread: Thread[One,5,main]
One: 15

New thread: Thread[Two,5,main]
Two: 15

One: 14

Two: 14

One: 13

Two: 13

One: 12

Two: 12

One: 11

Two: 11

Suspending thread One

Two

10
Two:
Two:
Two:
Two:

Resuming thread One
Suspending thread Two

Prepared by: Navin K. Sharma 38

Downloaded from CSIT Tutor

Java Unit 1

One: 10

One: 9

One: 8

One: 7

One: 6

Resuming thread Two
Waiting for threads to finish.
Two: 5

One: 5

Two: 4

One: 4

Two: 3

One: 3

Two: 2

One: 2

Two: 1

One: 1

Two exiting.

One exiting.

Main thread exiting.

JAVA 1/O STREAMS

Most programs use data in one form or another, whether it is as input, output, or both. The Java
Development Kit (JDK) provides APIs for reading and writing streams of data. These APIs have
been part of the core JDK since version 1.0, but are often overshadowed by the more well-known
APls, such as JavaBeans, RMI, JDBC, and so on. However, input and output streams are the
backbone of the JDK APIs, and understanding them is not only crucial, but can also make
programming with them a lot of fun.

To bring data into a program, a Java program opens a stream to a data source, such as a file or
remote socket, and reads the information serially. On the flip side, a program can open a stream
to a data source and write to it in a serial fashion. Whether you are reading from a file or from a
socket, the concept of serially reading from, and writing to different data sources is the same. For
that very reason, once you understand the top level classes (java.io.Reader, java.io.Writer), the
remaining classes are straightforward to work with.

Character Streams versus Byte Streams

Prior to JDK 1.1, the input and output classes (mostly found in the java.io package) only
supported 8-bit byte streams. The concept of 16-bit Unicode character streams was introduced
in JDK 1.1. While byte streams were supported via the java.io.lnputStream and
java.io.OutputStream classes and their subclasses, character streams are implemented by the
java.io.Reader and java.io.Writer classes and their subclasses.

Most of the functionality available for byte streams is also provided for character streams. The

Prepared by: Navin K. Sharma 39 Java Unit 1

Downloaded from CSIT Tutor

methods for character streams generally accept parameters of data type char parameters, while
byte streams, you guessed it, work with byte data types. The names of the methods in both sets
of classes are almost identical except for the suffix, that is, character-stream classes end with the
suffix Reader or Writer and byte-stream classes end with the suffix InputStream and
OutputStream. For example, to read files using character streams, you would use the
java.io.FileReader class; for reading it using byte streams you would use
java.io.FilelnputStream.

Unless you are working with binary data, such as image and sound files, you should use
readers and writers (character streams) to read and write information for the following

reasons:

e They can handle any character in the Unicode character set (while the byte streams are
limited to 1SO-Latin-1 8-bit bytes).

e They are easier to internationalize because they are not dependent upon a specific
character encoding.

e They use buffering techniques internally and are therefore potentially much more
efficient than byte streams.

The Byte Stream Classes

Prepared by: Navin K. Sharma 40 Java Unit 1

Downloaded from CSIT Tutor

Stream Class
EuffcrcdllnputStream
BufferedCutputStream
ByteArrayInputStream
ByteArrayOutputStream
DatalnputStream

DataChatputStream

FilelnputStream
FileCutputStream
FilterInputStream
FilterOutputStream
InputStream
CutputStream
PipedInputStream
PipedCutputStream

PrintStream

PushbackInputStream

RandomAccessFile
SequencelnputStream

Meaning

Buffered input stream

Buffered output stream

Input stream that reads from a byte array
Output stream that writes to a byte array

An input stream that contains methods for
reafing the Java standard data types

An output stream that contains methods for
writing the Java standard data types

Input stream that reads from a file

Cutput stream that writes to a file
Implements InputStream

Implements CutputStream

Abstract class that describes stream input
Abstract class that describes stream output
Input pipe

Cutput pipe

Cutput stream that contains print() and
printlni)

[nput stream that supports one-byte “unget,”

which returns a byte to the input stream
Supports random access file [/0

[nput stream that is a combination of two or
more input streams that will be read
sequentially, one after the other

Table 121, The Byie Stroam Classes

The Character Stream Classes

Prepared by: Navin K. Sharma

41

Downloaded from CSIT Tutor

Java Unit 1

Stream Class
BufferedReader
BufferedWriter
CharArrayReader
CharArrayWriter
FileReader ;
FileWriter
FilterReader
FilterWriter
InputStreamBeader
LineNumberReader
OutputStreamWriter

PipedReader
PipedWriter

PrintWriter
PushbackReader
Reader

StringReader
StringWriter
Writer

Meaning
Buffered input character stream

Buffered output character stream

Imput stream that reads from a character array

Output streamn that writes to a character array

Imput stream that reads from a file
Output streamn that writes to a file
Filtered reader

Filtered writer

[nput stream that translates bytes to characters

Input stream that counts lines

Cutput stream that translates characters
to bytes

Input pipe

Cutput pipe

Cutput stream that contains print() and
printlnt }

Imput stream that allows characters to be
returned to the input stream

Abstract class that describes character
stream input

Input stream that reads from a string
Cutput stream that writes to a string

Abstract class that describes character

stream (ZIth];'- uk

Table 12-2. The Character Stream |70 Classes

Reading Console Input

In Java, console input is accomplished by reading from System.in. To obtain a character-based
stream that is attached to the console, you wrap System.in in a BufferedReader object, to create
a character stream.

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

Reading Characters
To read a character from a BufferedReader, use read(). The version of read() that we will be
using is

int read() throws IOException
Each time that read() is called, it reads a character from the input stream and returns it as an
integer value. It returns —1 when the end of the stream is encountered. As you can see, it can
throw an IOException.

The following program demonstrates read() by reading characters from the console until
the user types a “q”:

Prepared by: Navin K. Sharma 42 Java Unit 1

Downloaded from CSIT Tutor

/I Use a BufferedReader to read characters from the console.
import java.io.*;

class BRRead {
public static void main(String args[])
throws IOException
{
char c;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.printIn("Enter characters, 'q' to quit.");
/I read characters
do {
¢ = (char) br.read();
System.out.printIn(c);
} while(c '='q");
}
}

Here is a sample run:
Enter characters, ‘g’ to quit.
123abcq

1

O T 292 WN

q
This output may look a little different from what you expected, because System.in is line

buffered, by default. This means that no input is actually passed to the program until you
press ENTER. As you can guess, this does not make read() particularly valuable for interactive,
console input.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of the
BufferedReader class. Its general form is shown here:
String readLine() throws IOException
As you can see, it returns a String object.

The following program demonstrates BufferedReader and the readLine() method to read
from the console.lt creates an array of String objects and then reads in lines of text, storing
each line in the array. It will read up to 100 lines or until you enter “stop”.

import java.io.*;
class TinyEdit {

Prepared by: Navin K. Sharma 43 Java Unit 1

Downloaded from CSIT Tutor

public static void main(String argsf])
throws IOException

{

/I create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str[] = new String[100];
System.out.printIn("Enter lines of text.");
System.out.printIn("Enter 'stop’ to quit.");
for(int i=0; i<100; i++) {

str[i] = br.readLine();
if(str[i].equals("stop™)) break;

}

System.out.printIn("\nHere is your file:");
/I display the lines
for(int i=0; i<100; i++) {
if(str[i].equals("stop™)) break;
System.out.printIn(str[i]);
}
}
}
Here is a sample run:
Enter lines of text.
Enter 'stop' to quit.
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.
stop
Here is your file:
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.

File 1/0

The Byte Streams

The byte stream classes provide a rich environment for handling byte-oriented 1/0. A byte
stream can be used with any type of object, including binary data. This versatility makes byte
streams important to many types of programs. It contains two main abstract classess
InputStream and OutputStream.

InputStream

InputStream is an abstract class that defines Java’s model of streaming byte input. All of the
methods in this class will throw an IOException on error conditions. Below are the list of the
methods in InputStream :

Prepared by: Navin K. Sharma 44 Java Unit 1

Downloaded from CSIT Tutor

Method
int available()

void close()

void mark(int numBytes)

boolean markSupported()

int read()

int read(byte buffer[)

int read(byte buffer[], int offset,
int numBytes)

void reset()

long skip(long numBytes)

OutputStream

Description

Returns the number of bytes of input currently
available for reading.
Closes the input source. Further read attempts
will generate an IOException.
Places a mark at the current point in the input
stream that will remain valid until numBytes
bytes are read.
Returns true if mark()/reset() are supported
by the invoking stream.
Returns an integer representation of the next
available byte of input. —1 is returned when the
end of the file is encountered.
Attempts to read up to buffer.length bytes into
buffer and returns the actual number of bytes
that were successfully read. —1 is returned
when the end of the file is encountered.
Attempts to read up to numBytes bytes into
buffer starting at buffer[offset], returning the
number of bytes successfully read. —1 is
returned when the end of the file is
encountered.
Resets the input pointer to the previously
set mark.
Ignores (that is, skips) numBytes bytes of input,
returning the number of bytes actually ignored.

OutputStream is an abstract class that defines streaming byte output. All of the methods in this
class return a void value and throw an IOException in the case of errors. Table below shows the

methods in OutputStream

Method
void close()

void flush()

void write(int b)

void write(byte buffer[])

Prepared by: Navin K. Sharma

Description

Closes the output stream. Further write
attempts will generate an IOException.
Finalizes the output state so that any
buffers are cleared. That is, it flushes the
output buffers.

Writes a single byte to an output stream.
Note that the parameter is an int, which
allows you to call write() with expressions
without having to cast them back to byte.
Writes a complete array of bytes to an
output stream.

45 Java Unit 1

Downloaded from CSIT Tutor

void write(byte buffer[], int offset, Writes a subrange of numBytes bytes from
int numBytes) the array buffer, beginning at buffer[offset].

FilelnputStream

The FilelnputStream class creates an InputStream that you can use to read bytes from a file.
Its two most common constructors are shown here:

FileInputStream(String filepath)

FileInputStream(File fileObj)

Either can throw a FileNotFoundException. Here, filepath is the full path name of a file, and
fileObj is a File object that describes the file.

The following example creates two FileInputStreams that use the same disk file and each of the
two constructors:

FileInputStream fO = new FilelnputStream(*'D:\abc.txt™)

File f = new File("'D:\abc.txt™);

FileInputStream f1 = new FilelnputStream(f);

Although the first constructor is probably more commonly used, the second allows us to closely
examine the file using the File methods, before we attach it to an input stream. When a
FileInputStream is created, it is also opened for reading.

The example below shows how to read a single byte, an array of bytes, and a subrange array of
bytes. It also illustrates how to use available() to determine the number of bytes remaining, and
how to use the skip() method to skip over unwanted bytes. The program reads its own source
file, which must be in the current directory.

/I Demonstrate FilelnputStream.
import java.io.*;
class FilelnputStreamDemo {
public static void main(String args[]) throws Exception {
int size;
InputStream f = new FilelnputStream("FilelnputStreamDemo.java");
System.out.printin("Total Available Bytes: " + (size = f.available()));
int n = size/40;
System.out.printIn("First " + n + " bytes of the file one read() at a time");
for (int i=0; i < n; i++) {
System.out.print((char) f.read());
}
System.out.printin("\nStill Available: " + f.available());
System.out.printIn(*Reading the next " + n + " with one read(b[])");
byte b[] = new byte[n];
if (f.read(b) '=n) {
System.err.printin(“couldn't read " + n + " bytes.");
}
System.out.println(new String(b, 0, n));
System.out.printIn("\nStill Available: " + (size = f.available()));

Prepared by: Navin K. Sharma 46 Java Unit 1

Downloaded from CSIT Tutor

System.out.printIn("Skipping half of remaining bytes with skip()");
f.skip(size/2);
System.out.printin("Still Available: " + f.available());
System.out.printin("Reading " + n/2 + " into the end of array");
if (f.read(b, n/2, n/2) '=n/2) {
System.err.printin(couldn't read " + n/2 + " bytes.");
}
System.out.printIn(new String(b, 0, b.length));
System.out.printIn("\nStill Available: " + f.available());
f.close();
}

}

Here is the output produced by this program:

Total Available Bytes: 1433

First 35 bytes of the file one read() at a time

/I Demonstrate FilelnputStream.

im

Still Available: 1398

Reading the next 35 with one read(b[])

port java.io.*;

class FilelnputS

Still Available: 1363

Skipping half of remaining bytes with skip()

Still Available: 682

Reading 17 into the end of array

port java.io.*;

read(b) '=n) {

S

Still Available: 665

FileOutputStream

FileOutputStream creates an OutputStream that you can use to write bytes to a file. Its most
commonly used constructors are shown here:

FileOutputStream(String filePath)

FileOutputStream(File fileObj)

FileOutputStream(String filePath, boolean append)

FileOutputStream(File fileObj, boolean append)

They can throw a FileNotFoundException or a SecurityException. Here, filePath is the full path
name of a file, and fileObj is a File object that describes the file. If append is true, the file is
opened in append mode. The fourth constructor was added by Java 2, version 1.4.

Creation of a FileOutputStream is not dependent on the file already existing. FileOutputStream
will create the file before opening it for output when you create the object. In the case where you
attempt to open a read-only file, an IOException will be thrown.

Prepared by: Navin K. Sharma 47 Java Unit 1

Downloaded from CSIT Tutor

The following example creates a sample buffer of bytes by first making a String and then using
the getBytes() method to extract the byte array equivalent. It then creates three files. The first,
filel.txt, will contain every other byte from the sample. The second, file2.txt, will contain the
entire set of bytes. The third and last, file3.txt, will contain only the last quarter. Unlike the
FileInputStream methods, all of the FileOutputStream methods have a return type of void. In the
case of an error, these methods will throw an IOException

/l Demonstrate FileOutputStream.

import java.io.*;

class FileOutputStreamDemo {
public static void main(String args[]) throws Exception {
String source = "Now is the time for all good men\n"
+ " to come to the aid of their country\n”
+ " and pay their due taxes.";
byte buff] = source.getBytes();
OutputStream fO = new FileOutputStream(*filel.txt");
for (int i=0; i < buf.length; i +=2) {
fO.write(buf[i]);
}
f0.close();
OutputStream f1 = new FileOutputStream("file2.txt");
f1.write(buf);
fl.close();
OutputStream f2 = new FileOutputStream("file3.txt");
f2.write(buf,buf.length-buf.length/4,buf.length/4);
f2.close();

¥
ki

Here are the contents of each file after running this program.
First, filel.txt:

Nwi h iefralgo e

t oet hi ftercuty na hi u ae.

Next, file2.txt:

Now is the time for all good men

to come to the aid of their country

and pay their due taxes.

Finally, file3.txt:

nd pay their due taxes.

The Character Streams

While the byte stream classes provide sufficient functionality to handle any type of 1/0
operation, they cannot work directly with Unicode characters. Since one of the main purposes
of Java is to support the “write once, run anywhere” philosophy, it was necessary to include
direct 1/0O support for characters.At the top of the character stream hierarchies are the Reader

Prepared by: Navin K. Sharma 48 Java Unit 1

Downloaded from CSIT Tutor

and Writer abstract classes.

Reader

Reader is an abstract class that defines Java’s model of streaming character input. All of the
methods in this class will throw an IOException on error conditions. Table below provides a

synopsis of the methods in Reader.

Method

abstract void close()

void mark(int numChars)

boolean markSupported()

int ready()

int read(char buffer|]) '

abstract int read(char buffer[|,
int offset,

int numChars)

boolean ready()
void reset()

long skip(long mumChars)

Description

Closes the input source. Further read
attempts will generate an IOException.

Places a mark at the current point in the
input stream that will remain valid until
numChars characters are read.

Returns true if mark()/ reset() are
supported on this stream.

Returns an integer representation of the
next available character from the invoking
input stream. —1 is returned when the end
of the file is encountered.

Attempts to read up to buffer.length
characters into buffer and returns the actual
number of characters that were successfully
read. -1 is returned when the end of the file
is encountered.

Attempts to read up to numChars characters
into buffer starting at buffer[offset], returning
the number of characters successfully read.
-1 is returned when the end of the file is
encountered.

Returns true if the next input request will
not wait. Otherwise, it returns false.

Resets the input pointer to the previously
set mark.

Skips over mumChars characters of input,
returning the number of characters actually

skipped.

Table 17-3. The Methods Defined by Reader]

FileReader

The FileReader class creates a Reader that you can use to read the contents of a file. Its two most
commonly used constructors are shown here:

FileReader(String filePath)

Prepared by: Navin K. Sharma

49

Downloaded from CSIT Tutor

Java Unit 1

FileReader(File fileObj)
Either can throw a FileNotFoundException. Here, filePath is the full path name of a file, and
fileObj is a File object that describes the file.

The following example shows how to read lines from a file and print these to the standard output
stream. It reads its own source file, which must be in the current directory.

// Demonstrate FileReader.

import java.io.*;

class FileReaderDemo {

public static void main(String args[]) throws Exception {
FileReader fr = new FileReader("FileReaderDemo.java");
BufferedReader br = new BufferedReader(fr);

String s;

while((s = br.readLine()) = null) {
System.out.printIn(s);

}

fr.close();

}

}

Writer

Writer is an abstract class that defines streaming character output. All of the methods in this class
return a void value and throw an IOException in the case of errors. Table below shows a
synopsis of the methods in Writer.

Prepared by: Navin K. Sharma 50 Java Unit 1

Downloaded from CSIT Tutor

Method Description

abstract void close() Closes the output stream. Further write
attempts will generate an IOException.

abstract void flush() Finalizes the output state so that any
buffers are cleared. That is, it flushes the
output buffers.

void write(int ch) Writes a single character to the invoking
output stream. Note that the parameter is
an int, which allows you to call write with
expressions without having to cast them
back to char.

void write{char buffer(]) Writes a complete array of characters to
the invoking output stream.
abstract void write(char buffer|], Writes a subrange of numChars characters
int offset, from the array buffer, beginning at
int numChars) buffer[offset] to the invoking output stream.
void write(String str) Writes str to the invoking output stream.
void write(String str, int offsef, Writes a subrange of numChars characters
int numChars) from the array str, beginning at the
specified offset.

Table 17-4. The Methods Defined by Writer

FileWriter

FileWriter creates a Writer that you can use to write to a file. Its most commonly used
constructors are shown here:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWriter(File fileObj)

FileWriter(File fileObj, boolean append)

They can throw an IOException. Here, filePath is the full path name of a file, and fileObj is a
File object that describes the file. If append is true, then output is appended to the end of the file.
Creation of a FileWriter is not dependent on the file already existing. FileWriter will create the
file before opening it for output when you create the object. In the case where you attempt to
open a read-only file, an IOException will be thrown.The following example is a character
stream version of an example shown earlier when FileOutputStream was discussed.

This version creates a sample buffer of characters by first making a String and then using the
getChars() method to extract the character array equivalent. It then creates three files. The first,
filel.txt, will contain every other character from the sample. The second, file2.txt, will contain
the entire set of characters. Finally, the third, file3.txt, will contain only the last quarter.

/l Demonstrate FileWriter.
Prepared by: Navin K. Sharma 51 Java Unit 1

Downloaded from CSIT Tutor

import java.io.*;

class FileWriterDemo {

public static void main(String args[]) throws Exception {
String source = "Now is the time for all good men\n"
+ " to come to the aid of their country\n"
+ " and pay their due taxes.";
char buffer[] = new char[source.length()];
source.getChars(0, source.length(), buffer, 0);
FileWriter fO = new FileWriter("filel.txt");
for (int i=0; i < buffer.length; i += 2) {
fO.write(buffer[i]);
¥

f0.close();

FileWriter f1 = new FileWriter("file2.txt");

f1.write(buffer);

f1.close();

FileWriter f2 = new FileWriter("file3.txt");
f2.write(buffer,buffer.length-buffer.length/4,buffer.length/4);

f2.close();
}
}
Prepared by: Navin K. Sharma 52 Java Unit 1

Downloaded from CSIT Tutor

User Interface components with swing

A graphical user interface (GUI) presents a user-friendly mechanism for interacting with an application.
A GUI (pronounced “GOO0-ee”) gives an application a distinctive “look and feel.” GUIs are built from GUI
components. These are sometimes called controls or widgets—short for window gadgets. A GUI
component is an object with which the user interacts via the mouse, the keyboard or another form of
input, such as voice recognition. The Swing GUl components are defined in the javax.swing package.

Different Java GUI controls

Basic Controls

{:} [v] Hair

Widdle buttan [v] Teeth

JButton JCheckBox

Marthia Washington -
Ahigail Adams
Martha Randalph
Crolley Madison
Elizabeth Maonroe
Loviza Adams

] |

JList

) Bird
O Cat
) Dog
) Rabhit

® Pig

JRadioButton

ity |Santa Fosa |

JTextField

Prepared by: Navin Kishor Sharma

Pig -
Bird

Cat

Ciog

Rahbhit

Fig

JComboBox

A Menu | Another Menu

Atext-only menu item Alt-1

{:} Both text and icon

Aradio button menu item
Another one

A check hox menu iterm

o o D@{}

Another one

A submenu b

JMenu

Frames Per Second

|
! L i 1

0 10 20 30

JSlider

Enterthe password: |-------

JPasswordField

1 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Interactive Controls

l/ﬁwatches 'HsE | RGE |

1O
T Recent:
[0 A :II=_]

P resi e

-

D Sample Text Sample Text

JColorChooser

Styled Text
Thizs iz an uneditable —
JEditorPane, which was initiclized
with HTML test £am a URL. _
T T T T
< =
~.and embedded icons.. ;
A
F e | —
| — 7
JEditorPane
Prepared by: Navin Kishor Sharma 2 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

& Open

Look In: [My Computer v | |@||TT A o—
£ Local Disk (C:) = DVD-RW Drive (D:)
= Shared Documents = Removable Disk (E:)
File Name: |
Files of Type: |image -
Open Cancel
JFileChooser
Hiost Lser Faszword Last Modified
Biocca Games |Freddy I#astBAummzh Mar 16, 2006
zahhle ichabod Tazh! 3452 Mar 6, 2006
Sun Developer |frazg@hotmail.co.. |AasWE41 b Feh 22, 2006
Heirloom Seeds |shams@amail.... |bhkz[ADFTE! Jul 29, 2005
Facific Zoo Shop |seal@hotmail.c... [vhAN 24 %z Feh 22, 2006
JTable
Thiz iz an edifable TTextdreq. A |2 [Mia Farnilia
)) Sh
fext area is ¢ "plain® texi ¥ I? |jar:ﬂnar:ra
component, which means that [y Mufiin
calthongh it can display text in o [Arva
ary font, ali af the ftext is in the [wiinky
same font. - [Bongo
JTextArea JTree
Uneditable Controls
4 A
lmage and Text ;
Text-Cnly Lahel % F
{:} |Cli|:l-: ordrop to setimage
3% |
Jlabel JProgressBar JToolTip
Prepared by: Navin Kishor Sharma 3 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Top-Level Containers

An Inane Question

FrameDemo E]@

? Would you like green egas and ham?

es o

JDialog JFrame

General Purpose Containers

hetric System

ho,000 || centimeters |+
! LY ‘ [
JPanel JScrollPane
Bird.gif ;:.
Cat.gif
Crog.gif =

T4Tahd | §3Tand Rabbit.gif
S#Tab1 54 Tah2 Pig.gir

dukeWWaveRed.qif B
Panel #1 kattyCosrmo.oif p

JTabbedPane JSplitPane

Pls Visit the URL http://docs.oracle.com/javase/tutorial/uiswing/components/index.html for detailed
study of Java GUI using Swing.

Overview of Swing Components

Prepared by: Navin Kishor Sharma 4 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

http://docs.oracle.com/javase/tutorial/uiswing/components/index.html

JFrame JDialog JTextField JTextArea

Fig 3. Inheritance hierarchy for the Component class

JLabal Displays uneditable text and/or icons.
ITextField Typically receives input from the user.

JButton Triggers an event when clicked with the mouse.
JCheckBox Specifies an option that can be selected or not selected.
JComboBox A drop-down list of items from which the user can make a selection.

JList A list of items from which the user can make a selection by clicking on any
one of them. Multiple elements can be selected.
JPanel An area in which components can be placed and organized.

fig. Some basic GUI components

Swing vs. AWT

There are actually two sets of Java GUI components. In Java’s early days, GUIs were built with
components from the Abstract Window Toolkit (AWT) in package java.awt. These look like the native
GUI components of the platform on which a Java program executes. For example, a Button object
displayed in a Java program running on Microsoft Windows looks like those in other Windows

Prepared by: Navin Kishor Sharma 5 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

applications. On Apple Mac OS X, the Button looks like those in other Mac applications. Sometimes,
even the manner in which a user can interact with an AWT component differs between platforms. The
component’s appearance and the way in which the user interacts with it are known as its look-and-feel.

Swing GUI components allow you to specify a uniform look-and-feel for your application across all
platforms or to use each platform’s custom look-and-feel. An application can even change the look-and-
feel during execution to enable users to choose their own preferred look-and-feel.

Most Swing components are lightweight components—they’re written, manipulated and displayed
completely in Java. AWT components are heavyweight components, because they rely on the local
platform’s windowing system to determine their functionality and their look-and-feel. Several Swing
components are heavyweight components.

Java Top-Level Containers

Swing provides three generally useful top-level container classes: JFrame, JDialog, and JApplet. When
using these classes, you should keep these facts in mind:

1. To appear onscreen, every GUI component must be part of a containment hierarchy. A containment
hierarchy is a tree of components that has a top-level container as its root.

2. Each GUI component can be contained only once. If a component is already in a container and you try
to add it to another container, the component will be removed from the first container and then added
to the second.

3. Each top-level container has a content pane that, generally speaking, contains (directly or indirectly)
the visible components in that top-level container's GUI.

4. You can optionally add a menu bar to a top-level container. The menu bar is by convention positioned
within the top-level container, but outside the content pane.

EEX

ToplevelDemo
Frama

M Bar

Contant Pana with
Yellow Labsal

Top-Level Containers and Containment Hierarchies

Prepared by: Navin Kishor Sharma 6 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Each program that uses Swing components has at least one top-level container. This top-level container
is the root of a containment hierarchy — the hierarchy that contains all of the Swing components that
appear inside the top-level container.

As a rule, a standalone application with a Swing-based GUI has at least one containment hierarchy with
a JFrame as its root. For example, if an application has one main window and two dialogs, then the
application has three containment hierarchies, and thus three top-level containers. One containment
hierarchy has a JFrame as its root, and each of the other two has a JDialog object as its root.

A Swing-based applet has at least one containment hierarchy, exactly one of which is rooted by a
JApplet object. For example, an applet that brings up a dialog has two containment hierarchies. The
components in the browser window are in a containment hierarchy rooted by a JApplet object. The
dialog has a containment hierarchy rooted by a JDialog object.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TopLevelDemo {
private static void createAndShowGUI() {
//Create and set up the window.
JFrame frame = new JFrame("TopLevelDemo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Create the menu bar. Make it have a green background.
JMenuBar greenMenuBar = new JMenuBar();
greenMenuBar.setOpaque(true);
greenMenuBar.setBackground(new Color(154, 165, 127));
greenMenuBar.setPreferredSize(new Dimension(200, 20));

//Create a yellow label to put in the content pane.
JLabel yellowLabel = new JLabel();
yellowlLabel.setOpaque(true);
yellowlLabel.setBackground(new Color(248, 213, 131));
yellowlLabel.setPreferredSize(new Dimension(200, 180));

//Set the menu bar and add the label to the content pane.
frame.setJMenuBar(greenMenuBar);
frame.getContentPane().add(yellowLabel, BorderLayout.CENTER);

/*

//Create a panel and add components to it.

JPanel contentPane = new JPanel(new BorderlLayout());
contentPane.setBorder(someBorder);
contentPane.add(someComponent, BorderLayout.CENTER);
contentPane.add(anotherComponent, BorderLayout.PAGE_END);
toplLevelContainer.setContentPane(contentPane);

*/

Prepared by: Navin Kishor Sharma 7 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

//Display the window.
frame.pack();
frame.setVisible(true);

}

public static void main(String[] args) {
//Schedule a job for the event-dispatching thread:
//creating and showing this application's GUI.
javax.swing.SwingU'tilities.invokeLater(new Runnable() {
public void run() {
createAndShowGUI();
}
N;
}

} //end of class TopLevelDemo

fig. the containment hierarchy for this example's GUI

Creating a Frame

A top-level window (that is, a window that is not contained inside another window) is called a frame in
Java. The AWT library has a class, called Frame, for this top level. The Swing version of this class is called
JFrame and extends the Frame class.

import javax.swing.*;

public class SimpleFrameTest

{

public static void main(String([] args)

{

SimpleFrame frame = new SimpleFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

class SimpleFrame extends JFrame

Prepared by: Navin Kishor Sharma 8 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

{

public SimpleFrame()

{
setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

}
public static final int DEFAULT_WIDTH = 300;
public static final int DEFAULT_HEIGHT = 200;

}
]l [[

fig. A simple frame

Swing GUI components are instances of class JFrame or a subclass of JFrame. JFrame is an indirect
subclass of class java.awt.Window that provides the basic attributes and behaviors of a window—a title
bar at the top, and buttons to minimize, maximize and close the window.

Buttons, text fields, and other user interface elements extend the class Component. Components can be
placed inside containers such as panels.

By default, closing a window simply hides the window. However, when the user closes the frame, we
would like the application to terminate. setDefaultCloseOperation method(inherited from class
JFrame) with constant JFrame.EXIT_ON_CLOSE as the argument indicate that the program should
terminate when the window is closed by the user.

Dialog Box Using Swing

Dialog boxes are windows in which programs display important messages to the user or obtain
informationfrom the user. Most applications you use on a daily basis use windows or dialog boxes (also
called dialogs) to interact with the user.

Java’s JOptionPane class (package javax.swing) provides prebuilt dialog boxes for both input and
output. These are displayed by invoking static JOptionPane methods. Program below presents a simple
addition application that uses two input dialogs to obtain integers from the user and a message dialog to
display the sum of the integers the user enters.

// Fig. 14.2: Addition.java
// Addition program that uses JOptionPane for input and output.

import javax.swing.JOptionPane; // program uses JOptionPane
public class Addition

Prepared by: Navin Kishor Sharma 9 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

{

public static void main(String[] args)
{
// obtain user input from JOptionPane input dialogs
String firstNumber =
JOptionPane.showlnputDialog("Enter first integer");
String secondNumber =
JOptionPane.showlnputDialog("Enter second integer");
// convert String inputs to int values for use in a calculation
int numberl = Integer.parselnt(firstNumber);
int number2 = Integer.parselnt(secondNumber);
int sum = numberl + number2; // add numbers
// display result in a JOptionPane message dialog
JOptionPane.showMessageDialog(null, "The sumis " + sum,
"Sum of Two Integers", JOptionPane.PLAIN_MESSAGE);
}// end method main

}// end class Addition

Output
(2) Input dizlog displayed by lines 10—11
Prompt to the user ~__ h
i 42&"' O] Text field in which the
When the user clicks OK. e 14 user types a value
showInputDialog retums Enterfirstinteger ___— W i
to the program the 100 typed 100

by theuserasa String; the — |————_

program must convert_the ’[0% l | cancsl |
Stringtoan int

{(b) Input dialog dispiayed by lines 12-13 (c) Message dialog displayed by lines 22-23

| input o] ‘Sum of Two Integers 5

= Enter second integer The sumis 123
23 |
< -
l OKtl | Cancel |

When the user clicks OK, the message dizlog is
dismissed (removed from the screen)

figl

Input Dialogs

Line 3 imports class JOptionPane. Lines 10—11 declare the local String variable first- Number and assign it
the result of the call to JOptionPane static method showlnputDialog. This method displays an input

dialog using the method’s String argument ("Enter first integer") as a prompt.

Message Dailogs

Lines 22-23 use JOptionPane static method showMessageDialog to display a message dialog (the last
screen of Fig. 1) containing the sum. The first argument helps the Java application determine where to

Prepared by: Navin Kishor Sharma 10 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

position the dialog box. A dialog is typically displayed from a GUI application with its own window. The
first argument refers to that window (known as the parent window) and causes the dialog to appear
centered over the parent. If the first argument is null, the dialog box is displayed at the center of your
screen. The second argument is the message to display—in this case, the result of concatenating the
String "The sum is " and the value of sum. The third argument—"Sum of Two Integers" —is the String
that should appear in the title bar at the top of the dialog. The fourth argument—
JOptionPane.PLAIN_MESSAGE—is the type ofmessage dialog to display. A PLAIN_MESSAGE dialog does
not display an icon to the left of the message.

JOptionPane Message Dialog Constants

The constants that represent the message dialog types are shown in Fig. 2. All message dialog types
except PLAIN_MESSAGE display an icon to the left of the message. These icons provide a visual
indication of the message’s importance to the user. A QUESTION_MESSAGE icon is the default icon for
an input dialog box (see Fig. 2).

ERROR MESSAGE Indicates an error.

Indicates an informational message.

INFORMATION MESSACE 6
WARNING MESSAGE ' Warns of a potential problem.
b -
QUESTION MESSAGE - Poses a question. This dialog normally requires a
9 response, such as clicking a Yes or a No button.
PLAIN MESSAGE no A dialog that contains a message, but no icon.
icon
fig. 2
JLabel

A typical GUI consists of many components. GUI designers often provide text stating the purpose of each
components. Such text is known as a label and is created with a JLabel—a subclass of JComponent. A
JLabel displays read-only text, an image, or both text and an image. Applications rarely change a label’s
contents after creating it.

// LabelFrame.java
// Demonstrating the JLabel class.

import java.awt.FlowlLayout; // specifies how components are arranged

import javax.swing.JFrame; // provides basic window features

import javax.swing.JLabel; // displays text and images

import javax.swing.SwingConstants; // common constants used with Swing

import javax.swing.lcon; // interface used to manipulate images

import javax.swing.Imagelcon; // loads images

Prepared by: Navin Kishor Sharma 11 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

public class LabelFrame extends JFrame

{

private JLabel labell; // JLabel with just text

private JLabel label2; // JLabel constructed with text and icon
private JLabel label3; // JLabel with added text and icon

// LabelFrame constructor adds JLabels to JFrame

public LabelFrame()

{

super("Testing JLabel");

setLayout(new FlowLayout()); // set frame layout

// JLabel constructor with a string argument
labell = new JLabel("Label with text");
labell.setToolTipText("This is labell");
add(labell); // add labell to JFrame

// JLabel constructor with string, lcon and alignment arguments
Icon bug = new Imagelcon(getClass().getResource("bugl.png"));
label2 = new JLabel("Label with text and icon", bug,
SwingConstants.LEFT);

label2.setToolTipText("This is label2");

add(label2); // add label2 to JFrame

label3 = new JLabel(); // JLabel constructor no arguments
label3.setText("Label with icon and text at bottom");

label3.setlcon(bug); // add icon to JLabel

label3.setHorizontalTextPosition(SwingConstants.CENTER);
label3.setVerticalTextPosition(SwingConstants.BOTTOM);
label3.setToolTipText("This is label3");

add(label3); // add label3 to JFrame
}// end LabelFrame constructor

}// end class LabelFrame

// LabelTest.java
// Testing LabelFrame.

import javax.swing.JFrame;

public class LabelTest

{

public static void main(String[] args)

{

LabelFrame labelFrame = new LabelFrame(); // create LabelFrame
labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
labelFrame.setSize(260, 180); // set frame size
labelFrame.setVisible(true); // display frame

}// end main

}// end class LabelTest

Prepared by: Navin Kishor Sharma 12 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

output

|2 Tesing JLabel = = | 2 Tesing JLabel =
Label with text Label with text
Lﬁ Label with text and icon Lﬁ Labiel with text and icon
e Thig iz label2
¥ 5
Label with lcan and fext &t Dotdom Label with loon and fext &t Botdom

Introduction to event handling

Normally, a user interacts with an application’s GUI to indicate the tasks that the application should
perform. For example, when you write an e-mail in an e-mail application, clicking the Send button tells
the application to send the e-mail to the specified e-mail addresses. GUIs are event driven. When the
user interacts with a GUI component, the interaction—known as an event—drives the program to
perform a task. Some common user interactions that cause an application to perform a task include
clicking a button, typing in a text field, selecting an item from a menu, closing a window and moving
the mouse. The code that performs a task in response to an event is called an event handler, and the
overall process of responding to events is known as event handling.

Steps Required to Set Up Event Handling for a GUI Component
Before an application can respond to an event for a particular GUI component, you must:

1. Create a class that represents the event handler and implements an appropriate interface—known as
an event-listener interface.

2. Indicate that an object of the class from Step 1 should be notified when the event occurs—known as
registering the event handler.

Text Field with event handling

A text field is a basic text control that enables the user to type a small amount of text. When the user
indicates that text entry is complete (usually by pressing Enter), the text field fires an action event. If
you need to obtain more than one line of input from the user, use a text area.

Prepared by: Navin Kishor Sharma 13 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

JTextComponent

JTextFisld JTextArea
1
JFormatted TextField
1
JPasswordFisld
Text Controls J Plain Text Areas

JEditorPana
|
JTextPane

Styled Text Areas

// Demonstrating the JTextField class.
import java.awt.FlowLayout;

import java.awt.event.ActionlListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JTextField;

import javax.swing.JPasswordField;
import javax.swing.JOptionPane;

public class TextFieldFrame extends JFrame

{
private JTextField textField1; // text field with set size

private JTextField textField2; // text field constructed with text
private JTextField textField3; // text field with text and size

private JPasswordField passwordField; // password field with text

// TextFieldFrame constructor adds JTextFields to JFrame

public TextFieldFrame()

{

super("Testing JTextField and JPasswordField");
setLayout(new FlowlLayout()); // set frame layout

// construct textfield with 10 columns
textField1 = new JTextField(10);
add(textField1); // add textField1 to JFrame

// construct textfield with default text
textField2 = new JTextField("Enter text here");
add(textField2); // add textField2 to JFrame

// construct textfield with default text and 21 columns
textField3 = new JTextField("Uneditable text field", 21);
textField3.setEditable(false); // disable editing

add(textField3); // add textField3 to JFrame

Prepared by: Navin Kishor Sharma 14

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

// construct passwordfield with default text
passwordField = new JPasswordField("Hidden text");
add(passwordField); // add passwordField to JFrame

// register event handlers

TextFieldHandler handler = new TextFieldHandler();
textField1l.addActionListener(handler);
textField2.addActionListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(handler);

}// end TextFieldFrame constructor

// private inner class for event handling

private class TextFieldHandler implements ActionListener
{

// process text field events

public void actionPerformed(ActionEvent event)

{
String string =""; // declare string to display

// user pressed Enter in JTextField textField1
if(event.getSource() == textField1)
string = String.format("textField1: %s",event.getActionCommand());

// user pressed Enter in JTextField textField2
else if(event.getSource() == textField2)
string = String.format("textField2: %s",event.getActionCommand());

// user pressed Enter in JTextField textField3
else if(event.getSource() == textField3)
string = String.format("textField3: %s",event.getActionCommand());

// user pressed Enter in JTextField passwordField
else if(event.getSource() == passwordField)
string = String.format("passwordField: %s",event.getActionCommand());

// display JTextField content
JOptionPane.showMessageDialog(null, string);
}// end method actionPerformed

}// end private inner class TextFieldHandler
}// end class TextFieldFrame

// Testing TextFieldFrame.
import javax.swing.JFrame;

Prepared by: Navin Kishor Sharma 15 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

public class TextFieldTest

{

public static void main(String[] args)

{

TextFieldFrame textFieldFrame = new TextFieldFrame();
textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
textFieldFrame.setSize(350, 100); // set frame size
textFieldFrame.setVisible(true); // display frame

}// end main

}// end class TextFieldTest

output

helo

lUmdibbb sost fiold

! lEr@r]oxt here I

| Unaditabla tast fiold \

\:helo

o textField2: Erter texthere

ERRTRIRTTRS :

&/ Testing Tearied ana PassvordFila (S][58

'helo] Erter texthera , o -
! Rassmmemes - textFieldl: Uneditable iex field

' Unaditablo toxt fiold t\? Ty

| |

[helo fEntortoxt hore? ;
3 : : passwordField: Hidden text

Uraditabla ‘o fiold B

Common GUI Event Types and Listener Interfaces

Prepared by: Navin Kishor Sharma 16 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Many different types of events can occur when the user interacts with a GUI. The event information is
stored in an object of a class that extends AWTEvent (from package java.awt). Figure below illustrates a
hierarchy containing many event classes from the package java.awt.event. These event types are used
with both AWT and Swing components. Additional event types that are specific to Swing GUI
components are declared in package javax.swing.event.

Object — ActionEvent
L — AdjustmentEvent
EventObject |
t T — ContainerEvent
IQ*— TextEvent B e
L Componentbvent | | PaintEvent
L— WindowEvent
- InputEvent
i
KeyEvent MouseEvent
1
MouseWheelEvent

Event Class

Description

ActionEvent Generated when a button is pressed, a list item is
double-clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized,
or becomes visible.

ContainerEvent Generated when a component is added to or removed
from a container.

FocusEvent Generated when a component gains or loses
keyboard focus.

InputEvent Abstract super class for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also
occurs when a choice selection is made or a checkable
menu item is selected or deselected.

Prepared by: Navin Kishor Sharma 17 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked,
pressed, or released; also generated when the mouse enters
or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved. (Added by
Java 2, version 1.4)

TextEvent Generated when the value of a text area or text field is
changed.
WindowEvent Generated when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

fig. Some event classes of package java.awt.event

The event-handling mechanism mainly consist of three parts—the event source, the event object and
the event listener. The event source is the GUI component with which the user interacts. The event
object encapsulates information about the event that occurred, such as a reference to the event source
and any event-specific information that may be required by the event listener for it to handle the event.
The event listener is an object that’s notified by the event source when an event occurs; in effect, it
“listens” for an event, and one of its methods executes in response to the event. A method of the event
listener receives an event object when the event listener is notified of the event. The event listener then
uses the event object to respond to the event. This event-handling model is known as the delegation
event model—an event’s processing is delegated to an object (the event listener) in the application.

Event Source Description

Button Cenerates action events when the button is pressed.

Checkbox Generates item events when the check box is selected or deselected.
Choice Cenerates item events when the choice is changed.

List Cenerates action events when an item is double-clicked; generates

item events when an item is selected or deselected.

Menu ltem Cenerates action events when a menu item is selected; generates item
events when a checkable menu item is selected or deselected.

Scrollbar Cenerates adjustment events when the scroll bar is manipulated.
Text components Generates text events when the user enters a character.

Nindow Generates window events when a window is activated, closed
W -
deactivated, deiconified, iconified, opened, or quit.

Table 8958 Event Source Examples

fig. Event Source Examples

For each event-object type, there’s typically a corresponding event-listener interface. An event listener
for a GUI event is an object of a class that implements one or more of the event-listener interfaces from

Prepared by: Navin Kishor Sharma 18 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

packages java.awt.event and javax.swing.event. Many of the event-listener types are common to both
Swing and AWT components. Such types are declared in package java.awt.event, and some of them are
shown in Fig. below. Additional event-listener types that are specific to Swing components are declared
in package javax.swing.event.

Each event-listener interface specifies one or more event-handling methods that must be declared in
the class that implements the interface.Any class which implements an interface must declare all the
abstract methods of that interface; otherwise, the class is an abstract class and cannot be used to
create objects.

When an event occurs, the GUI component with which the user interacted notifies its registered
listeners by calling each listener’s appropriate event-handling method. For example, when the user
presses the Enter key in a JTextField, the registered listener’s actionPerformed method is called.

«interfaces
java.util.Eventlistener
I I l

«interfaces winterfaces sinterfaces
Actionlistener AdjustmentListener Componentlistener

«interfaces - «interfaces i «interfapes

Containerlistener Focuslistener ItemLlistener
«interfaces - einterface» i sinterfaces
Keylistener Mouselistener MouseMotionListener

«interfacen - - «interfaces

Textlistener Windowlistener
Prepared by: Navin Kishor Sharma 19 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Interface
ActionListener

AdjustmentListener

ComponentListener
ContainerListener
FocusListener
[temListener
KeyListener

MouseListener

MouseMotionListener
MouseWheelListener

TextListener

WindowFocusListener

WindowListener

Description
Defines one method to receive action events.

Defines one method to receive adjustment events.

Defines four methods to recognize when a component is
hidden, moved, resized, or shown.

Defines two methods to recognize when a component is
added to or removed from a container.

Defines two methods to recognize when a component gains
or loses keyboard focus.

Defines one method to recognize when the state of an
item changes.

Defines three methods to recognize when a key is pressed,
released, or typed.

Defines five methods to recognize when the mouse is clicked,
enters a component, exits a component, is pressed, or is
released.

Defines two methods to recognize when the mouse is
dragged or moved.

Defines one method to recognize when the mouse wheel is
moved. (Added by Java 2, version 1.4)

Defines one method to recognize when a text value changes.

Defines two methods to recognize when a window gains or
loses input focus. (Added by Java 2, version 1.4)

Defines seven methods to recognize when a window is
activated, closed, deactivated, deiconified, iconified, opened,
or quit.

Table Y98 Commonly Used Event Listener Interfaces

fig. Some common event-listener interfaces of package java.awt.event

Prepared by: Navin Kishor Sharma

20 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

The ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an action
event occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface
This interface defines the adjustmentValueChanged() method that is invoked when
an adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface
This interface defines four methods that are invoked when a component is resized,
moved, shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)
void componentMoved(ComponentEvent ce)
void componentShown{ComponentEvent ce)
void componentHidden(ComponentEvent ce)

; The AWT processes the resize and niove events. The componentResized() and
) componentMoved() methods are provided for notification purpases only.

The ContainerlListener Interface

This interface contains two methods. When a component is added to a container,
componentAdded() is invoked. When a component is removed from a container,
componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)

void componentRemoved(ContainerEvent ce)

The FocusListener Interface

This interface defines two methods, When a component obtains keyboard focus,
focusGained() is invoked. When a component loses keyboard focus, focusLost()
is called. Their general forms are shown here:

void focusGained(FocusEvent fe)
void focusLost(FocusEvent fe)

Prepared by: Navin Kishor Sharma 21 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

The ItemListener Interface
This interface defines the itemStateChanged() method that is invoked when the state

of an item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ic}

The KeylListener Interface

This interface defines three methods. The keyPressed() and keyReleased() methods

are invoked when a key is pressed and released, respectively. The keyTyped() method
is invoked when a character has been entered.

For example, if a user presses and releases the A key, three events are generated in
sequence: key pressed, tvped, and released. If a user presses and releases the HOME
key, two key events are generated in sequence: key pressed and released.

The general forms of these methods are shown here:

void keyPressed{KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)

The Mouselistener Interface

This interface defines five methods. If the mouse is pressed and released at the
same point, mouseClicked() is invoked. When the mouse enters a component, the
mouseEntered() method is called. When it leaves, mouseExited() is called. The
mousePressed() and mouseReleased() methods are invoked when the mouse is
pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited{MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

The MouseMotionListener Interface

This interface defines two methods. The mouseDragged() methed is called multiple
times as the mouse is dragged. The mouseMoved() method is called multiple times as
the mouse is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)
void mouseMoved{MouseEvent me)

JCheckBox

Prepared by: Navin Kishor Sharma 22 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

The MouseWheelListener Interface

This interface defines the mouseWheelMoved() method that is invoked when the
mouse wheel is moved. Its general form is shown here.

void mouseWheelMoved (MouseWheelEvent mve)

MouseWheelListener was added by Java 2, version L4,

The TextListener Interface

This interface defines the textChanged() method that is invoked when a change occurs
in a text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

The WindowFocusListener Interface

This interface defines two methods: windowGainedFocus() and windowLostFocus().
These are called when a window gains or losses input focus. Their general forms are
shown here.

void windowGainedFocus(WindowEvent we)
void windowLostFocus(WindowEvent wwe)

WindowFocusListener was added by Java 2, version 1.4.

The WindowListener Interface

This interface defines seven methods. The windowActivated() and windowDeactivated()
methods are invoked when a window is activated or deactivated, respectively. If a
window is iconified, the windowlconified() method is called. When a window is deiconified,
the windowDeiconified() method is called. When a window is opened or closed,

the windowOpened() or windowClosed() methods are called, respectively. The
window(Josing() method is called when a window is being closed. The general forms

of these methods are

void windowActivated(WindowEvent wr)
void windowClosed (WindowEvent we)
void windowClosing{WindowEvent we)
void windowDeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowlconified(WindowEvent we)
void windowOpened(WindowEvent we)

JButton

A button is a component the user clicks to trigger a specific action. A Java application can use several
types of buttons, including command buttons, checkboxes, toggle buttons and radio buttons. Figure
below shows the inheritance hierarchy of the Swing buttons . As you can see, all the button types are
subclasses of AbstractButton (package javax.swing), which declares the common features of Swing

buttons.

Prepared by: Navin Kishor Sharma 23 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

JComponent

A
I

AbstractButton
A A
JButton —T T— JToggleButton
JCheckBox -—T T—

fig. Swing button hierarchy.

JRadioButton

A command button generates an ActionEvent when the user clicks it. Command buttons are created
with class JButton. The text on the face of a JButton is called a button label. A GUI can have many
JButtons, but each button label should be unique in the portion of the GUI that’s currently displayed.

The application below creates two JButtons and demonstrates that JButtons support the display of
Icons. Event handling for the buttons is performed by a single instance of inner class ButtonHandler.

// ButtonFrame.java

// Creating JButtons.

import java.awt.FlowLayout;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.lcon;

import javax.swing.Imagelcon;

import javax.swing.JOptionPane;

public class ButtonFrame extends JFrame

{

private JButton plainJButton; // button with just text
private JButton fancyJButton; // button with icons

// ButtonFrame adds JButtons to JFrame

public ButtonFrame()

{

super("Testing Buttons");

setLayout(new FlowLayout()); // set frame layout

plainJButton = new JButton("Plain Button"); // button with text

add(plainJButton); // add plainJButton to JFrame

Prepared by: Navin Kishor Sharma 24

Downloaded from CSIT Tutor

Unit 2:User Interface using Swing

Icon bugl = new Imagelcon(getClass().getResource("bugl.gif"));
Icon bug2 = new Imagelcon(getClass().getResource("bug2.gif"));
fancyJButton = new JButton("Fancy Button", bugl); // set image
fancyJButton.setRollovericon(bug2); // set rollover image

add(fancylButton); // add fancyJButton to JFrame

// create new ButtonHandler for button event handling
ButtonHandler handler = new ButtonHandler();
fancyJButton.addActionListener(handler);
plainJButton.addActionListener(handler);

}// end ButtonFrame constructor

// inner class for button event handling

private class ButtonHandler implements ActionListener
{

// handle button event

public void actionPerformed(ActionEvent event)

{

JOptionPane.showMessageDialog(ButtonFrame.this , String.format(
"You pressed: %s",event.getActionCommand()));

}// end method actionPerformed

}// end private inner class ButtonHandler

}// end class ButtonFrame

// ButtonTest.java
// Testing ButtonFrame.
import javax.swing.JFrame;

public class ButtonTest

{

public static void main(String[] args)

{

ButtonFrame buttonFrame = new ButtonFrame(); // create ButtonFrame
buttonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
buttonFrame.setSize(275, 110); // set frame size
buttonFrame.setVisible(true); // display frame

}// end main

}// end class ButtonTest

output

Prepared by: Navin Kishor Sharma 25 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Plain Bunon J [@ Fancy Button] Plain BU'ROE [[r.@ Fancy Butten

s —

6 You preszed: Pizin Buston

et oD EH | [Tt S oEm

Pialn Bus I s | oy Eutt Plain 8% Y& | Fancy Button
n Bufton]L—E[\;nw an} | Plain Button | L?]W\l

Moceage (=]

6 You preassad: F aney Huthan

JCheckBox
Classes JCheckBox and JRadioButton are subclasses of JToggleButton. A JRadioButton is different from a
JCheckBox in that normally several JRadioButtons are grouped together and are mutually exclusive—

only one in the group can be selected at any time where as more than one check box can be selected at
a time.

//CheckBoxFrame.java

// Creating JCheckBox buttons.
import java.awt.FlowLayout;

import java.awt.Font;

import java.awt.event.ltemListener;
import java.awt.event.ltemEvent;
import javax.swing.JFrame;

import javax.swing.JTextField;
import javax.swing.JCheckBox;

public class CheckBoxFrame extends JFrame

{
private JTextField textField; // displays text in changing fonts
private JCheckBox boldJCheckBox; // to select/deselect bold
private JCheckBox italic)CheckBox; // to select/deselect italic

// CheckBoxFrame constructor adds JCheckBoxes to JFrame
public CheckBoxFrame()

Prepared by: Navin Kishor Sharma 26 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

super("JCheckBox Test");
setLayout(new FlowlLayout()); // set frame layout

// set up JTextField and set its font

textField = new JTextField("Watch the font style change", 20);
textField.setFont(new Font("Serif", Font.PLAIN, 14));

add(textField); // add textField to JFrame

boldJCheckBox = new JCheckBox("Bold"); // create bold checkbox
italicJCheckBox = new JCheckBox("Italic"); // create italic

add(boldJCheckBox); // add bold checkbox to JFrame

add(italicJCheckBox); // add italic checkbox to JFrame

// register listeners for JCheckBoxes
CheckBoxHandler handler = new CheckBoxHandler();
boldJCheckBox.addItemListener(handler);
italicJCheckBox.addltemListener(handler);

}// end CheckBoxFrame constructor

// private inner class for ItemListener event handling

private class CheckBoxHandler implements ItemListener

{

// respond to checkbox events

public void itemStateChanged(ItemEvent event)

{
Font font = null; // stores the new Font
// determine which CheckBoxes are checked and create Font
if (boldJCheckBox.isSelected() && italicJCheckBox.isSelected())
font = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
else if(boldJCheckBox.isSelected())
font = new Font("Serif", Font.BOLD, 14);
else if(italicJCheckBox.isSelected())
font = new Font("Serif", Font.ITALIC, 14);
else
font = new Font("Serif", Font.PLAIN, 14);
textField.setFont(font); // set textField's font

}// end method itemStateChanged

}// end private inner class CheckBoxHandler
}// end class CheckBoxFrame

// CheckBoxTest.java
// Testing CheckBoxFrame.

import javax.swing.JFrame;

public class CheckBoxTest
{

Prepared by: Navin Kishor Sharma 27 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

public static void main(String[] args)

{

CheckBoxFrame checkBoxFrame = new CheckBoxFrame();
checkBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
checkBoxFrame.setSize(275, 100); // set frame size
checkBoxFrame.setVisible(true); // display frame

}// end main
}// end class CheckBoxTest

Output

e

L) ICheckBox Tect E=SEOR "X

Watch the font style change

L Bold |_| Ralic

‘

r

|22 JCheckBax Tect

=S OB "X

Watch the font style change

| Boid (] naiic

/

L) ICheckRox Test E<SIE08 "X |

v\\'atch the font style change

() Bold [nalic

o

-

JRadioButton

Radio buttons (declared with class JRadioButton) are similar to checkboxes in that they have two
states—selected and not selected (also called deselected). However, radio buttons normally appear as
a group in which only one button can be selected at a time .Selecting a different radio button forces all
others to be deselected. Radio buttons are used to represent mutually exclusive options (i.e., multiple

L] ICheckBox Tect [E=SEO8 "X

Watch the font style change
(] Boig (Y] natic

™

options in the group cannot be selected at the same time).

// Fig. 14.19: RadioButtonFrame.java

// Creating radio buttons using ButtonGroup and JRadioButton.

import java.awt.FlowLayout;

import java.awt.Font;

import java.awt.event.ltemListener;
import java.awt.event.ltemEvent;
import javax.swing.JFrame;

import javax.swing.JTextField;
import javax.swing.JRadioButton;
import javax.swing.ButtonGroup;

public class RadioButtonFrame extends JFrame

{

private JTextField textField; // used to display font changes

private Font plainFont; // font for plain text

Prepared by: Navin Kishor Sharma

28

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

private Font boldFont; // font for bold text

private Font italicFont; // font for italic text

private Font boldltalicFont; // font for bold and italic text
private JRadioButton plainJRadioButton; // selects plain text
private JRadioButton boldJRadioButton; // selects bold text
private JRadioButton italicJRadioButton; // selects italic text
private JRadioButton boldltalicJRadioButton; // bold and italic

private ButtonGroup radioGroup; // buttongroup to hold radio buttons

// RadioButtonFrame constructor adds JRadioButtons to JFrame
public RadioButtonFrame()

{

super("RadioButton Test");

setLayout(new FlowlLayout()); // set frame layout

textField = new JTextField("Watch the font style change", 25);
add(textField); // add textField to JFrame

// create radio buttons

plainJRadioButton = new JRadioButton("Plain", true);
boldJRadioButton = new JRadioButton("Bold", false);
italicJRadioButton = new JRadioButton("Italic", false);
boldItalicJRadioButton = new JRadioButton("Bold/Italic", false);

add(plainJRadioButton); // add plain button to JFrame
add(boldJRadioButton); // add bold button to JFrame
add(italicJRadioButton); // add italic button to JFrame
add(boldltalicJRadioButton); // add bold and italic button

// create logical relationship between JRadioButtons
radioGroup = new ButtonGroup(); // create ButtonGroup
radioGroup.add(plainJRadioButton); // add plain to group
radioGroup.add(boldJRadioButton); // add bold to group
radioGroup.add(italicJRadioButton); // add italic to group
radioGroup.add(boldItalic)RadioButton); // add bold and italic

// create font objects

plainFont = new Font("Serif", Font.PLAIN, 14);

boldFont = new Font("Serif", Font.BOLD, 14);

italicFont = new Font("Serif", Font.ITALIC, 14);

boldItalicFont = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
textField.setFont(plainFont); // set initial font to plain

// register events for JRadioButtons
plainJRadioButton.addltemListener(
new RadioButtonHandler(plainFont));
boldJRadioButton.addltemListener(
new RadioButtonHandler(boldFont));

Prepared by: Navin Kishor Sharma 29

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

italicJRadioButton.addltemListener(

new RadioButtonHandler(italicFont));
boldltalicJRadioButton.addltemListener(
new RadioButtonHandler(boldltalicFont));

}// end RadioButtonFrame constructor

// private inner class to handle radio button events
private class RadioButtonHandler implements ItemListener

{

private Font font; // font associated with this listener
public RadioButtonHandler(Font f)

{

font = f; // set the font of this listener

}// end constructor RadioButtonHandler

// handle radio button events

public void itemStateChanged(ItemEvent event)
{

textField.setFont(font); // set font of textField
}// end method itemStateChanged

}// end private inner class RadioButtonHandler
}// end class RadioButtonFrame

//RadioButtonTest.java
// Testing RadioButtonFrame.
import javax.swing.JFrame;

public class RadioButtonTest

{

public static void main(String[] args)

{

RadioButtonFrame radioButtonFrame = new RadioButtonFrame();
radioButtonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
radioButtonFrame.setSize(300, 100); // set frame size
radioButtonFrame.setVisible(true); // display frame

}// end main

}// end class RadioButtonTest

output
‘ |2,/ RadioButton Test = Een < | @ RadioButton Test =
Watch the font style change Watch the font style change
(® Plain () Bold () Malic () Bolditalic () Plain %Bold () Mtalic () Bold/alic
Prepared by: Navin Kishor Sharma 30 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

.| RadioButton Test E=R(E0R) |22/ RadioButton Test = o

Watch the font stvle change Watch the font style change

() Plain () Bold %nalic (_) Boldftalic (U Plain () Bold () Htalic %Boldﬂtalic

JComboBox (Using an Anonymous Inner Class for Event Handling)

A combo box (sometimes called a drop-down list) enables the user to select one item from a list .
Combo boxes are implemented with class JComboBox, which extends class JComponent. JComboBoxes
generate ItemEvents just as JCheckBoxes and JRadioButtons do. This example also demonstrates a
special form of inner class that’s used frequently in event handling.

// Fig. 14.21: ComboBoxFrame.java

// JComboBox that displays a list of image names.
import java.awt.FlowLayout;

import java.awt.event.ltemListener;

import java.awt.event.ltemEvent;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JComboBox;

import javax.swing.lcon;

import javax.swing.Imagelcon;

public class ComboBoxFrame extends JFrame

{
private JComboBox imagesJComboBox; // combobox to hold names of icons
private JLabel label; // label to display selected icon

private static final String[] names =

{"bugl.gif", "bug2.gif", "travelbug.gif", "buganim.gif" };
private lcon[] icons = {

new Imagelcon(getClass().getResource(names[0])),
new Imagelcon(getClass().getResource(names[1])),
new Imagelcon(getClass().getResource(names[2])),
new Imagelcon(getClass().getResource(names[3])) };

// ComboBoxFrame constructor adds JComboBox to JFrame

public ComboBoxFrame()

{

super("Testing JComboBox");

setLayout(new FlowLayout()); // set frame layout
imagesJComboBox = new JComboBox(names); // set up JComboBox
imagesJComboBox.setMaximumRowCount(3); // display three rows
imagesJComboBox.addItemListener(

new ItemListener() // anonymous inner class

{

Prepared by: Navin Kishor Sharma 31 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

// handle JComboBox event

public void itemStateChanged(ItemEvent event)

{

// determine whether item selected

if (event.getStateChange() == ItemEvent.SELECTED)
label.setlcon(icons|
imagesJComboBox.getSelectedIndex()]);

}// end method itemStateChanged

}// end anonymous inner class

); // end call to addItemListener

add(imagesJComboBox); // add combobox to JFrame
label = new JLabel(icons[0]); // display first icon
add(label); // add label to JFrame

}// end ComboBoxFrame constructor

}

// Fig. 14.22: ComboBoxTest.java
// Testing ComboBoxFrame.
import javax.swing.JFrame;

public class ComboBoxTest

{

public static void main(String[] args)

{

ComboBoxFrame comboBoxFrame = new ComboBoxFrame();
comboBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
comboBoxFrame.setSize(350, 150); // set frame size
comboBoxFrame.setVisible(true); // display frame

}// end main

}// end class ComboBoxTest

Output

Prepared by: Navin Kishor Sharma 32 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

| Testing JComboBox =z | | Testing JComboBox F=ziEen

DUGT Qi

ougz it
travelbo ot |y
: S
1 e S
—~)
Scroll box Scrollbar to scroll through the croll arrows

items in the list

| =+ Testing }Combobox [= = K |4+ Testing SComboBox

buczan

bavelbug oif

niganim gire

JList

A list displays a series of items from which the user may select one or more items . Lists are created
with class JList, which directly extends class JComponent. Class JList supports single selection lists
(which allow only one item to be selected at a time) and multiple-selection lists(which allow any
number of items to be selected).

single-selection lists
The application below creates a JList containing 13 color names.When a color name is clicked in the JList,
a ListSelectionEvent occurs and the application changes the background color of the application window
to the selected color.

// ListFrame.java

// JList that displays a list of colors.

import java.awt.FlowLayout;

import java.awt.Color;

import javax.swing.JFrame;

import javax.swing.JList;

import javax.swing.JScrollPane;

import javax.swing.event.ListSelectionListener;
import javax.swing.event.ListSelectionEvent;
import javax.swing.ListSelectionModel;

public class ListFrame extends JFrame

{

private JList colorlList; // list to display colors

private static final String[] colorNames = { "Black", "Blue", "Cyan",
"Dark Gray", "Gray", "Green", "Light Gray", "Magenta",
"Orange", "Pink", "Red", "White", "Yellow" };

private static final Color[] colors = { Color.BLACK, Color.BLUE,
Color.CYAN, Color.DARK_GRAY, Color.GRAY, Color.GREEN,

Prepared by: Navin Kishor Sharma 33 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Color.LIGHT_GRAY, Color.MAGENTA, Color.ORANGE, Color.PINK,
Color.RED, Color.WHITE, Color.YELLOW };

// ListFrame constructor add JScrollPane containing JList to JFrame
public ListFrame()

{

super("List Test");

setLayout(new FlowlLayout()); // set frame layout

color]List = new JList(colorNames); // create with colorNames
colorlList.setVisibleRowCount(5); // display five rows at once

// do not allow multiple selections

color]List.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
// add a JScrollPane containing JList to frame

add(new JScrollPane(color]List));

colorlList.addListSelectionListener(

new ListSelectionListener() // anonymous inner class
{

// handle list selection events

public void valueChanged(ListSelectionEvent event)
{

getContentPane().setBackground(
colors[colorl]List.getSelectedIndex()]);

}// end method valueChanged

}// end anonymous inner class

); // end call to addListSelectionListener

}// end ListFrame constructor

}// end class ListFrame

// ListTest.java
//Selecting colors from a JList.
import javax.swing.JFrame;

public class ListTest

{

public static void main(String[] args)

{

ListFrame listFrame = new ListFrame(); // create ListFrame
listFrame.setDefaultCloseOperation(JFrame.EXIT _ON_CLOSE);
listFrame.setSize(350, 150); // set frame size
listFrame.setVisible(true); // display frame

}// end main

}// end class ListTest

output

Prepared by: Navin Kishor Sharma 34 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

e = = = =)
Lo List Test e EOR "<~
| Black |

| Blue
o
Dark Cray
| 9."1'7"

Multiple-Selection Lists
A multiple-selection list enables the user to select many items from a JList.

// MultipleSelectionFrame.java
//Copying items from one List to another.
import java.awt.FlowLayout;

import java.awt.event.ActionlListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JList;

import javax.swing.JButton;

import javax.swing.JScrollPane;

import javax.swing.ListSelectionModel;

public class MultipleSelectionFrame extends JFrame

{

private JList color]List; // list to hold color names

private JList copylList; // list to copy color names into

private JButton copylButton; // button to copy selected names
private static final String[] colorNames = { "Black", "Blue", "Cyan",

"Dark Gray", "Gray", "Green", "Light Gray", "Magenta", "Orange",
"Pink", "Red", "White", "Yellow" };

// MultipleSelectionFrame constructor
public MultipleSelectionFrame()

{

super("Multiple Selection Lists");
setLayout(new FlowlLayout()); // set frame layout

color]List = new JList(colorNames); // holds names of all colors
color]List.setVisibleRowCount(5); // show five rows
colorlList.setSelectionMode(

ListSelectionModel. MULTIPLE_INTERVAL_SELECTION);

add(new JScrollPane(colorlList)); // add list with scrollpane

copylButton = new JButton("Copy >>>"); // create copy button
copyJButton.addActionListener(

new ActionListener() // anonymous inner class

{

Prepared by: Navin Kishor Sharma 35 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

// handle button event

public void actionPerformed(ActionEvent event)

{

// place selected values in copylJList
copylList.setListData(color]List.getSelectedValues());
}// end method actionPerformed

}// end anonymous inner class

); // end call to addActionListener

add(copyJButton); // add copy button to JFrame

copylJList = new JList(); // create list to hold copied color names
copylList.setVisibleRowCount(5); // show 5 rows
copylList.setFixedCellWidth(100); // set width
copylList.setFixedCellHeight(15); // set height
copylList.setSelectionMode(
ListSelectionModel.SINGLE_INTERVAL_SELECTION);

add(new JScrollPane(copylList)); // add list with scrollpane
}// end MultipleSelectionFrame constructor

}// end class MultipleSelectionFrame

//MultipleSelectionTest.java
//Testing MultipleSelectionFrame.
import javax.swing.JFrame;

public class MultipleSelectionTest

{

public static void main(String[] args)

{

MultipleSelectionFrame multipleSelectionFrame =

new MultipleSelectionFrame();
multipleSelectionFrame.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);
multipleSelectionFrame.setSize(350, 150); // set frame size
multipleSelectionFrame.setVisible(true); // display frame
}// end main

}// end class MultipleSelectionTest

output

Prepared by: Navin Kishor Sharma 36

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Black
Cyan

Copy >>> | Gray

Mouse Event Handling

Mouselistener and MouseMotionListener interface methods

Methods of interface MouseL istener

public void mousePressed(MouseEvent event)

Called when a mouse button is pressed while the mouse cursor is on a component.
public void mouseClicked(MouseEvent event)

Called when a mouse button is pressed and released while the mouse cursor remains sta-
tionary on a component. This event is always preceded by a call to mousePressed.
public void mouseReleased(MouseEvent event)

Called when a mouse button is released afier being pressed. This event is always preceded
by a call to mousePressed and one or more calls to mouseDragged.

public void mouseEntered(MouseEvent event)
Called when the mouse cursor enters the bounds of a component.
public void mouseExited(MouseEvent event)

Called when the mouse cursor leaves the bounds of a component.

Methods of interface MouseMotionListener

public void mouseDragged(MouseEvent event)
Called when the mouse button is pressed while the mouse cursor is on a component and
the mouse is moved while the mouse button remains pressed. This event is always preceded

by a call to mousePressed. All drag events are sent to the component on which the user
began to drag the mouse.

public void mouseMoved(MouseEvent event)

Called when the mouse is moved (with no mouse buttons pressed) when the mouse cursor
is on a component. All move events are sent to the component over which the mouse is
currently positioned.

//MouseTrackerFrame.java
//Demonstrating mouse events.
import java.awt.Color;

import java.awt.BorderlLayout;

Prepared by: Navin Kishor Sharma 37 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

import java.awt.event.Mouselistener;

import java.awt.event.MouseMotionListener;
import java.awt.event.MouseEvent;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

public class MouseTrackerFrame extends JFrame

{

private JPanel mousePanel; // panel in which mouse events will occur
private JLabel statusBar; // label that displays event information

// MouseTrackerFrame constructor sets up GUl and

// registers mouse event handlers

public MouseTrackerFrame()

{

super("Demonstrating Mouse Events");

mousePanel = new JPanel(); // create panel
mousePanel.setBackground(Color. WHITE); // set background color
add(mousePanel, BorderLayout.CENTER); // add panel to JFrame
statusBar = new JLabel("Mouse outside JPanel");

add(statusBar, BorderLayout.SOUTH); // add label to JFrame

// create and register listener for mouse and mouse motion events
MouseHandler handler = new MouseHandler();
mousePanel.addMouselistener(handler);
mousePanel.addMouseMotionListener(handler);

}// end MouseTrackerFrame constructor

private class MouseHandler implements MouselListener,
MouseMotionListener

{

// Mouselistener event handlers

// handle event when mouse released immediately after press
public void mouseClicked(MouseEvent event)

{

statusBar.setText(String.format("Clicked at [%d, %d]",
event.getX() event.getY()));

}// end method mouseClicked

// handle event when mouse pressed

public void mousePressed(MouseEvent event)
statusBar.setText(String.format("Pressed at [%d, %d]",
event.getX() event.getY()));

}// end method mousePressed

// handle event when mouse released
public void mouseReleased(MouseEvent event)

{

Prepared by: Navin Kishor Sharma 38 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

statusBar.setText(String.format("Released at [%d, %d]",
event.getX() event.getY()));
}// end method mouseReleased

// handle event when mouse enters area

public void mouseEntered(MouseEvent event)
statusBar.setText(String.format("Mouse entered at [%d, %d]",
event.getX() ,event.getY()));

mousePanel.setBackground(Color.GREEN);

}// end method mouseEntered

// handle event when mouse exits area
public void mouseExited(MouseEvent event)
{

statusBar.setText("Mouse outside JPanel");
mousePanel.setBackground(Color. WHITE);
}// end method mouseExited

// MouseMotionListener event handlers

// handle event when user drags mouse with button pressed
public void mouseDragged(MouseEvent event)

{

statusBar.setText(String.format("Dragged at [%d, %d]",
event.getX() event.getY()));

}// end method mouseDragged

// handle event when user moves mouse

public void mouseMoved(MouseEvent event)

{

statusBar.setText(String.format("Moved at [%d, %d]",
event.getX() ,event.getY()));

}// end method mouseMoved

}// end inner class MouseHandler

}// end class MouseTrackerFrame

// MouseTrackerFrame.java
// Testing MouseTrackerFrame.
import javax.swing.JFrame;

public class MouseTracker

{

public static void main(String[] args)

{

MouseTrackerFrame mouseTrackerFrame = new MouseTrackerFrame();
mouseTrackerFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mouseTrackerFrame.setSize(300, 100); // set frame size
mouseTrackerFrame.setVisible(true); // display frame

}// end main

Prepared by: Navin Kishor Sharma 39 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

}// end class MouseTracker

output

VClickedat_[v_‘lm.ﬂ]:

r
Released at (99, 31]

A
Dragged at[92, 31]

Adapter Classes

Many event-listener interfaces, such as Mouselistener and MouseMotionListener, contain multiple
methods. It’s not always desirable to declare every method in an event-listener interface. For instance,
an application may need only the mouseClicked handler from Mouselistener or the mouseDragged
handler from MouseMotionListener. Interface WindowlListener specifies seven window event-handling
methods. For many of the listener interfaces that have multiple methods, packages java.awt.event and
javax.swing.event provide event-listener adapter classes. An adapter class implements an interface and
provides a default implementation (with an empty method body) of each method in the interface.
Figure below shows several java.awt.event adapter classes and the interfaces they implement. You can
extend an adapter class to inherit the default implementation of every method and subsequently
override only the method(s) you need for event handling.

Prepared by: Navin Kishor Sharma 40 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Event-adapter class in java.awt.event Implements interface

ComponentAdapter ComponentListener
ContainerAdapter ContainerListener
FocusAdapter FocusListener
KeyAdapter KeyListener
MouseAdapter MouselListener
MouseMotionAdapter MouseMotionListener
WindowAdapter WindowlListener

fig. Event-adapter classes and the interfaces they implement in package java.awt.event.

//MouseDetailsFrame.java

// Demonstrating mouse clicks and distinguishing between mouse buttons.
import java.awt.BorderLayout;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import javax.swing.JFrame;

import javax.swing.JLabel;

public class MouseDetailsFrame extends JFrame

{

private String details; // String that is displayed in the statusBar
private JLabel statusBar; // JLabel that appears at bottom of window

// constructor sets title bar String and register mouse listener
public MouseDetailsFrame()

{

super("Mouse clicks and buttons");

statusBar = new JLabel("Click the mouse");

add(statusBar, BorderLayout.SOUTH);

addMouselistener(new MouseClickHandler()); // add handler
}// end MouseDetailsFrame constructor

// inner class to handle mouse events
private class MouseClickHandler extends MouseAdapter

{

// handle mouse-click event and determine which button was pressed
public void mouseClicked(MouseEvent event)

{

int xPos = event.getX(); // get x-position of mouse
int yPos = event.getY(); // get y-position of mouse

Prepared by: Navin Kishor Sharma 41 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

details = String.format("Clicked %d time(s)",
event.getClickCount());

if (event.isMetaDown());

details += " with right mouse button";

else if(event.isAltDown())// middle mouse button
details += " with center mouse button";

else // left mouse button

details += " with left mouse button";

statusBar.setText(details); // display message in statusBar
}// end method mouseClicked

}// end private inner class MouseClickHandler

}// end class MouseDetailsFrame

//MouseDetails.java

// Testing MouseDetailsFrame.

import javax.swing.JFrame;

public class MouseDetails

{

public static void main(String[] args)

{

MouseDetailsFrame mouseDetailsFrame = new MouseDetailsFrame();
mouseDetailsFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mouseDetailsFrame.setSize(400, 150); // set frame size
mouseDetailsFrame.setVisible(true); // display frame

}// end main

}// end class MouseDetails

output
) Mouse Clicks and Buttons o]
|%) Mouse Clicks and Buttons [ollE ==
Click the mouse %
Clicked 2 time(s) with left mouse bulton
| Mouse Clicks and Buttons @]
- : -
| £:/ Mouse Clicks and Buttons oz =S
Clicked 1 time(s) with right mouse bulton h
Clicked 5 time(s) with center mouse button

Prepared by: Navin Kishor Sharma 42 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

isMetaDown () Returns true when the user clicks the »ight mouse button on a
mouse with two or three buttons. To simulate a right-mouse-
button click on| a one-button mouse, the user can hold down
the Meta key on the keyboard and click the mouse button.

isA1tDown() Returns true when the user clicks the middle mouse button on a
mouse with three buttons. To simulate a middle-mouse-button
click on a one- or two-button mouse, the user can press the Al¢
key and click the only or left mouse button, respectively.

Key Event Handling with JTextArea

Key events are generated when keys on the keyboard are pressed and released. A class that implements
KeyListener must provide declarations for methods keyPressed, keyReleased and key-Typed, each of
which receives a KeyEvent as its argument. Class KeyEvent is a subclass of InputEvent. Method
keyPressed is called in response to pressing any key. Method key- Typed is called in response to
pressing any key that is not an action key. (The action keys are any arrow key, Home, End, Page Up,
Page Down, any function key, etc.) Method key- Released is called when the key is released after any
keyPressed or keyTyped event.

The application below demonstrates the KeylListener methods. Class KeyDemoFrame implements the
KeyListener interface, so all three methods are declared in the application. The constructor registers
the application to handle its own key events by using method addKeyListener . Method addKey- Listener
is declared in class Component, so every subclass of Component can notify Key- Listener objects of key
events for that Component.

setDisabledTextColor to change the text color in the JTextArea to black for readability.

getKeyCode to get the virtual key code of the pressed key.Class KeyEvent contains virtual key-code
constants that represent every key on the keyboard.

getKey-Text the value returned by getKeyCode is passed to static KeyEvent method getKey- Text, which
returns a string containing the name of the key that was pressed.

get-KeyChar (which returns a char) to get the Unicode value of the character typed.

isActionKey to determine whether the key in the event was an action key.

getModifiers is called to determine whether any modifier keys (such as Shift, Alt and Ctrl) were
pressed when the key event occurred.

getKeyModifiersText which produces a string containing the names of the pressed modifier keys.

//KeyDemoFrame.java
//Demonstrating keystroke events.
import java.awt.Color;

import java.awt.event.KeyLlistener;
import java.awt.event.KeyEvent;
import javax.swing.JFrame;

import javax.swing.JTextArea;

Prepared by: Navin Kishor Sharma 43 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

public class KeyDemoFrame extends JFrame implements KeyListener

{

private String linel =""; // first line of textarea

private String line2 = ""; // second line of textarea
private String line3 =""; // third line of textarea

private JTextArea textArea; // textarea to display output
// KeyDemoFrame constructor

public KeyDemoFrame()

{

super("Demonstrating Keystroke Events");

textArea = new JTextArea(10, 15); // set up JTextArea
textArea.setText("Press any key on the keyboard...");
textArea.setEnabled(false); // disable textarea
textArea.setDisabledTextColor(Color.BLACK); // set text color
add(textArea); // add textarea to JFrame

addKeylListener(this); // allow frame to process key events
}// end KeyDemoFrame constructor

// handle press of any key

public void keyPressed(KeyEvent event)

{

linel = String.format("Key pressed: %s",KeyEvent.getKeyText(event.getKeyCode())); // show pressed
key

setLines2and3(event); // set output lines two and three

}// end method keyPressed

// handle release of any key

public void keyReleased(KeyEvent event)

{

linel = String.format("Key released: %s",KeyEvent.getKeyText(event.getKeyCode())); // show released
key

setlines2and3(event); // set output lines two and three

}// end method keyReleased

// handle press of an action key

public void keyTyped(KeyEvent event)

{

linel = String.format("Key typed: %s",event.getKeyChar());
setlines2and3(event); // set output lines two and three
}// end method keyTyped

// set second and third lines of output
private void setLines2and3(KeyEvent event)

{

line2 = String.format("This key is %san action key",
(event.isActionKey() ?"" : "not "));
String temp = KeyEvent.getKeyModifiersText(event.getModifiers());

Prepared by: Navin Kishor Sharma 44 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

line3 = String.format("Modifier keys pressed: %s",
(temp.equals("") ? "none" : temp)); // output modifiers

textArea.setText(String.format("%s\n%s\n%s\n",
linel, line2, line3)); // output three lines of text
}// end method setlLines2and3

}// end class KeyDemoFrame

//KeyDemo.java

// Testing KeyDemoFrame.

import javax.swing.JFrame;

public class KeyDemo

{

public static void main(String[] args)

{

KeyDemoFrame keyDemoFrame = new KeyDemoFrame();
keyDemoFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
keyDemoFrame.setSize(350, 100); // set frame size
keyDemoFrame.setVisible(true); // display frame

}// end main

}// end class KeyDemo

output
G N (@)
| £.| Demonstrating Keystroke Events =3 EoR)| | &/ Demonstrating Keystroke Events F=nch >
Keytyped: 3 Keyreleased: A
This key is not an action key This key is not an action key
Modifier keys pressed: none Modifier keys pressed: none
- S ~
| = | Demonstrating Keystroke Events = | £ Demonstrating Keystroke Events = =
Key pressed: Shift Key typed: L
This key is not an action key This key is not an action key
Modifier keys pressed: Shift Modifier keys pressed: Shift
| =, Demonstrating Keystroke Events =
Key released: L
This key is not an action key
Modifier keys pressed: Shift
| <) Demonstrating Keystroke Events = === || Demonstrating Keystroke Events =0l |
Key pressed: F1 Keyreleased F1

This key is an action key
Modifier keys pressed: none

This key is an action key
Modifier keys pressed: none

Introduction to Layout Managers

Layout managers arrange GUI components in a container for presentation purposes. You can use the
layout managers for basic layout capabilities instead of determining every GUI component’s exact

Prepared by: Navin Kishor Sharma 45

Downloaded from CSIT Tutor

Unit 2:User Interface using Swing

position and size. This functionality enables you to concentrate on the basic look-and-feel and lets the
layout managers process most of the layout details. All layout managers implement the interface
LayoutManager (in package java.awt). Class Container’s setLayout method takes an object that
implements the LayoutManager interface as an argument. There are basically three ways for you to
arrange components in a GUI:

1. Absolute positioning: This provides the greatest level of control over a GUI’s appearance. By setting a
Container’s layout to null, you can specify the absolute position of each GUI component with respect to
the upper-left corner of the Container by using Component methods setSize and setlLocation or
setBounds. If you do this, you also must specify each GUI component’s size. Programming a GUI with
absolute positioning can be tedious, unless you have an integrated development environment (IDE) that
can generate the code for you.

2. Layout managers: Using layout managers to position elements can be simpler and faster than
creating a GUI with absolute positioning, but you lose some control over the size and the precise
positioning of GUI components.

3. Visual programming in an IDE: IDEs provide tools that make it easy to create GUIs. Each IDE typically
provides a GUI design tool that allows you to drag and drop GUI components from a tool box onto a
design area. You can then position, size and align GUI components as you like. The IDE generates the
Java code that creates the GUI. In addition, you can typically add event-handling code for a particular
component by double-clicking the component.

FlowLayout Default for javax. swing.JPanel. Places components sequentially (left
to right) in the order they were added. It’s also possible to specify the
order of the components by using the Container method add, which
takes a Component and an integer index position as arguments.

BorderLayout Default for IFrames (and other windows). Arranges the components
into five areas: NORTH, SOUTH, EAST, WEST and CENTER.
GridLayout Arranges the components into rows and columns.
FlowLayout

FlowlLayout is the simplest layout manager. GUI components are placed on a container from left to
right in the order in which they’re added to the container. When the edge of the container is reached,
components continue to display on the next line.

Class FlowLayout allows GUI components to be left aligned, centered (the default) and right aligned.
The application below creates three JButton objects and adds them to the application, using a
FlowlLayout layout manager. The components are center aligned by default. When the user clicks Left,
the alignment for the layout manager is changed to a left-aligned FlowlLayout. When the user clicks
Right, the alignment for the layout manager is changed to a right-aligned FlowLayout. When the user
clicks Center, the alignment for the layout manager is changed to a center-aligned FlowLayout.

//FlowlLayoutFrame.java
//Demonstrating FlowLayout alignments.

Prepared by: Navin Kishor Sharma 46 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

import java.awt.FlowLayout;

import java.awt.Container;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JButton;

public class FlowLayoutFrame extends JFrame

{

private JButton leftJButton; // button to set alignment left
private JButton centerJButton; // button to set alignment center
private JButton rightJButton; // button to set alignment right

private FlowlLayout layout; // layout object
private Container container; // container to set layout

// set up GUI and register button listeners

public FlowLayoutFrame()

{

super("FlowlLayout Demo");

layout = new Flowlayout(); // create FlowLayout
container = getContentPane(); // get container to layout
setlLayout(layout); // set frame layout

// set up leftJButton and register listener
leftJButton = new JButton("Left"); // create Left button
add(leftJButton); // add Left button to frame
left)Button.addActionListener(

new ActionListener() // anonymous inner class

{

// process leftJButton event

public void actionPerformed(ActionEvent event)
{

layout.setAlignment(FlowLayout.LEFT);

// realign attached components
layout.layoutContainer(container);

}// end method actionPerformed

}// end anonymous inner class

); // end call to addActionListener

// set up centerJButton and register listener

centerJButton = new JButton("Center"); // create Center button

add(centerJButton); // add Center button to frame
centerJButton.addActionListener(

new ActionListener() // anonymous inner class

{

// process centerJButton event

public void actionPerformed(ActionEvent event)

{
layout.setAlignment(FlowLayout.CENTER);

Prepared by: Navin Kishor Sharma 47

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

// realign attached components
layout.layoutContainer(container);
}// end method actionPerformed
}// end anonymous inner class

); // end call to addActionListener

// set up rightJButton and register listener
rightJButton = new JButton("Right"); // create Right button
add(rightJButton); // add Right button to frame
right)Button.addActionListener(

new ActionListener() // anonymous inner class

{

// process right)Button event

public void actionPerformed(ActionEvent event)
{

layout.setAlignment(FlowlLayout.RIGHT);

// realign attached components
layout.layoutContainer(container);

}// end method actionPerformed

}// end anonymous inner class

); // end call to addActionListener

}// end FlowlLayoutFrame constructor

}// end class FlowLayoutFrame

// FlowLayoutDemo.java
// Testing FlowLayoutFrame.
import javax.swing.JFrame;

public class FlowLayoutDemo

{

public static void main(String[] args)

{

FlowLayoutFrame flowLayoutFrame = new FlowLayoutFrame();
flowLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
flowLayoutFrame.setSize(300, 75); // set frame size
flowLayoutFrame.setVisible(true); // display frame

}// end main

}// end class FlowLayoutDemo

output

Prepared by: Navin Kishor Sharma 48 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

| | FlowLayout Demo (o= == || FlowLayout Demo =aEon |

L Left J | Center | | Right | ' Leﬂ& | Center | | Right |

= o~ o

\=:| FlowLayout Demo o[] | £:| FlowLayout Demo ol E® s

| Len || CenterD\J[Right | | Len | | center || Right&

~

y
%/ FlowLayo... [= |[&3

| Left || Center {!

| Right |

BorderlLayout

The BorderLayout layout manager (the default layout manager for a JFrame) arranges components
into five regions: NORTH, SOUTH, EAST, WEST and CENTER. NORTH corresponds to the top of the
container.

A BorderLayout limits a Container to containing at most five components—one in each region. The
components placed in the NORTH and SOUTH regions extend horizontally to the sides of the container
and are as tall as the components placed in those regions. The EAST and WEST regions expand vertically
between the NORTH and SOUTH regions and are as wide as the components placed in those regions.
The component placed in the CENTER region expands to fill all remaining space in the layout .

If all five regions are occupied, the entire container’s space is covered by GUI components. If the NORTH
or SOUTH region is not occupied, the GUI components in the EAST, CENTER and WEST regions expand
vertically to fill the remaining space. If the EAST or WEST region is not occupied, the GUI component in
the CENTER region expands horizontally to fill the remaining space. If the CENTER region is not occupied,
the area is left empty—the other GUI components do not expand

// BorderLayoutFrame.java

// Demonstrating BorderlLayout.
import java.awt.BorderLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JButton;

public class BorderLayoutFrame extends JFrame implements ActionListener
{

private JButton[] buttons; // array of buttons to hide portions

private static final String[] names = { "Hide North", "Hide South",

"Hide East", "Hide West", "Hide Center" };

private BorderLayout layout; // borderlayout object

// set up GUI and event handling

public BorderLayoutFrame()

Prepared by: Navin Kishor Sharma 49 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

{

super("BorderLayout Demo");

layout = new BorderLayout(5, 5); // 5 pixel gaps
setlLayout(layout); // set frame layout

buttons = new JButton[names.length]; // set size of array

// create JButtons and register listeners for them

for (int count = 0; count < names.length; count++)

{

buttons[count] = new JButton(names[count]);

buttons[count].addActionListener(this);

}// end for

add(buttons[0], BorderLayout.NORTH); // add button to north
add(buttons[1], BorderLayout.SOUTH); // add button to south
add(buttons[2], BorderLayout.EAST); // add button to east
add(buttons[3], BorderLayout.WEST); // add button to west
add(buttons[4], BorderLayout.CENTER); // add button to center
}// end BorderLayoutFrame constructor

// handle button events

public void actionPerformed(ActionEvent event)

{

// check event source and lay out content pane correspondingly
for (JButton button : buttons)

{

if (event.getSource() == button)

button.setVisible(false); // hide button clicked

else

button.setVisible(true); // show other buttons

}// end for

layout.layoutContainer(getContentPane()); // lay out content pane
}// end method actionPerformed

}// end class BorderLayoutFrame

// BorderLayoutDemo.java
// Testing BorderLayoutFrame.
import javax.swing.JFrame;

public class BorderLayoutDemo

{

public static void main(String[] args)

{

BorderLayoutFrame borderLayoutFrame = new BorderLayoutFrame();
borderLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
borderLayoutFrame.setSize(300, 200); // set frame size
borderLayoutFrame.setVisible(true); // display frame

}// end main

}// end class BorderLayoutDemo

Prepared by: Navin Kishor Sharma 50 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

output

horizontal |£:| BorderLayout Demo o[=[S || BorderLayout Demo o[[
Hide Noith |
gap T I
"‘-\..____‘_‘-\-\-\-L--
-\-\-\-\"-.
Hide West Hide Center Hide East
Hide Weast Hide Center Hide East
vertical
a0 T

gap | Hide South | | Hide South |
|£| BorderLayout Demeo == |£:| BorderLayout Demeo ==
(Hide Noith R Hide Noith |

Hide Center Hida East

Hide West Hide Center Hide East

[Hige South |
|Z:| BorderLayout Demo [[E |] |Z| BorderLayout Demo [=)]
[Hide Moith I 1 Hide Noith |

Hide West Hide Ceniar Hide Wast Hide East
I Hige Soutn] [Hige Soutn |

GridLayout

The GridLayout layout manager divides the container into a grid so that components can be placed in
rows and columns. Class GridlLayout inherits directly from class Object and implements interface
LayoutManager. Every Component in a GridLayout has the same width and height. Components are
added to a GridLayout starting at the top-left cell of the grid and proceeding left to right until the row is

full. Then the process continues left to right on the next row of the grid, and so on.

// GridLayoutFrame.java

// Demonstrating GridLayout.

import java.awt.GridLayout;

import java.awt.Container;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JButton;

public class GridLayoutFrame extends JFrame implements ActionListener

{

Prepared by: Navin Kishor Sharma

51

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

private JButton[] buttons; // array of buttons
private static final String[] names =
"one", "two", "three", "four", "five", "six" };
private boolean toggle = true; // toggle between two layouts
private Container container; // frame container
private GridLayout gridLayoutl; // first gridlayout
private GridLayout gridLayout2; // second gridlayout
// no-argument constructor
public GridLayoutFrame()
{
super("GridLayout Demo");
gridLayoutl = new GridLayout(2, 3,5,5); // 2 by 3; gaps of 5
gridLayout2 = new GridLayout(3, 2); // 3 by 2; no gap
container = getContentPane(); // get content pane
setLayout(gridLayoutl); // set JFrame layout
buttons = new JButton[names.length]; // create array of JButtons

for (int count = 0; count < names.length; count++)

{

buttons[count] = new JButton(names[count]);

buttons[count].addActionListener(this); // register listener
add(buttons[count]); // add button to JFrame

}// end for

}// end GridLayoutFrame constructor

// handle button events by toggling between layouts
public void actionPerformed(ActionEvent event)

{

if (toggle)

container.setlayout(gridLayout2); // set layout to second
else

container.setlayout(gridLayoutl); // set layout to first
toggle = ltoggle; // set toggle to opposite value
container.validate(); // re-lay out container

}// end method actionPerformed

}// end class GridLayoutFrame

// GridLayoutDemo.java
// Testing GridLayoutFrame.
import javax.swing.JFrame;

public class GridLayoutDemo

{
public static void main(String[] args)
{

GridLayoutFrame gridLayoutFrame = new GridlLayoutFrame();

Prepared by: Navin Kishor Sharma 52 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

gridLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
gridLayoutFrame.setSize(300, 200); // set frame size
gridLayoutFrame.setVisible(true); // display frame

}// end main

}// end class GridLayoutDemo

output
4. GridLeyout Demo (o o _+ GridLayout Deme o | |
one wo
one WO Mmres [“.
Ty
LT fowr
four five Alx
| fredt L1
JSlider

JSliders enable a user to select from a range of integer values. Class JSlider inherits from JComponent.
Figure below shows a horizontal JSlider with tick marks and the thumb that
allows a user to select a value.

Thumb "'_____-_-rl-l Lottt 1 -se—— Tick mark

if a JSlider has the focus (i.e., it's the currently selected GUI component in the user interface), the left
arrow key and right arrow key cause the thumb of the JSlider to decrease or increase by 1,
respectively. The down arrow key and up arrow key also cause the thumb to decrease or increase by 1
tick, respectively. The PgDn (page down) key and PgUp (page up) key cause the thumb to decrease or
increase by block increments of one-tenth of the range of values, respectively. The Home key moves
the thumb to the minimum value of the JSlider, and the End key moves the thumb to the maximum
value of the JSlider.

e paintComponent method that can be used to draw graphics.Method paintComponent takes a
Graphics object as an argument. This object is passed to the paintComponent method by the
system when a lightweight Swing component needs to be repainted.

e repaint method can be used if you want to update the graphics drawnon a Swing component.

o fillOval(int x, int y, int width, int height) draws a filled oval in the current color with the
specified width and height. The bounding rectangle’s top-left corner is located at (x, y). The oval
touches the center of all four sides of the bounding rectangle.

Prepared by: Navin Kishor Sharma 53 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

. width

o The JSlider constructor takes four arguments. The first argument specifies the orientation of
Slider, which is HORIZONTAL or VERTICAL (a constant in interface SwingConstants). The second
and third arguments indicate the minimum and maximum integer values in the range of values
for this JSlider. The last argument indicates that the initial value of the JSlider (i.e., where the

thumb is displayed).

e Method setMajorTickSpacing indicates that each major tick mark represents 10 values in the

range of values.

o Method setPaintTicks with a true argument indicates that the tick marks should be displayed

(they aren’t displayed by default).

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Dimension;
import javax.swing.JPanel;

public class OvalPanel extends JPanel

{
private int diameter = 10; // default diameter of 10

// draw an oval of the specified diameter
public void paintComponent(Graphics g)
{
super.paintComponent(g);
g.setColor(Color.red);
g.fillOval(10, 10, diameter, diameter); // draw circle

}// end method paintComponent

// validate and set diameter, then repaint
public void setDiameter(int newDiameter)

{
// if diameter invalid, default to 10
diameter = (newDiameter >= 0 ? newDiameter : 10);
repaint(); // repaint panel

Prepared by: Navin Kishor Sharma 54

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

}// end method setDiameter

// used by layout manager to determine preferred size
public Dimension getPreferredSize()
{
return new Dimension(200, 200);
}// end method getPreferredSize

// used by layout manager to determine minimum size
public Dimension getMinimumSize()
{
return getPreferredSize();
}// end method getMinimumSize
}// end class OvalPanel

import java.awt.BorderLayout;

import java.awt.Color;

import javax.swing.JFrame;

import javax.swing.JSlider;

import javax.swing.SwingConstants;
import javax.swing.event.Changelistener;
import javax.swing.event.ChangeEvent;

public class SliderFrame extends JFrame

{

private JSlider diameterJSlider; // slider to select diameter
private OvalPanel myPanel; // panel to draw circle

// no-argument constructor
public SliderFrame()

{

super("Slider Demo");

myPanel = new OvalPanel(); // create panel to draw circle
myPanel.setBackground(Color.YELLOW); // set background to yellow

// set up JSlider to control diameter value
diameterJSlider =

new JSlider(SwingConstants.HORIZONTAL, 0, 200, 10);
diameterJSlider.setMajorTickSpacing(10); // create tick every 10
diameterJSlider.setPaintTicks(true); // paint ticks on slider

// register JSlider event listener
diameterJSlider.addChangelListener(

new ChangelListener() // anonymous inner class
{

// handle change in slider value

Prepared by: Navin Kishor Sharma 55 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

public void stateChanged(ChangeEvent e)
{
myPanel.setDiameter(diameterl)Slider.getValue());
}// end method stateChanged
}// end anonymous inner class
); // end call to addChangelistener

add(diameterlSlider, BorderLayout.SOUTH); // add slider to frame
add(myPanel, BorderLayout.CENTER); // add panel to frame
}// end SliderFrame constructor
}// end class SliderFrame

import javax.swing.JFrame;

public class SliderDemo
{
public static void main(String[] args)
{
SliderFrame sliderFrame = new SliderFrame();
sliderFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
sliderFrame.setSize(220, 270); // set frame size
sliderFrame.setVisible(true); // display frame
}// end main
}// end class SliderDemo

Output

. o - ™

=/ Slidet Derw | = [3 = Shidet Deme | o | & /[
@

1

-

JColorChooser
Package javax.swing provides the JColorChooser GUI component that enables application users to select
colors. The application below demonstrates a JColorChooser dialog. When you click the Change Color

Prepared by: Navin Kishor Sharma 56 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

button, a JColorChooser dialog appears. When you select a color and press the dialog’s OK button, the
background color of the application window changes.

//ShowColors2JFrame.java
//Choosing colors with JColorChooser.
import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JColorChooser;
import javax.swing.JPanel;

public class ShowColors2JFrame extends JFrame
{

private JButton changeColorJButton;

private Color color = Color.LIGHT_GRAY;

private JPanel colorJPanel;

// set up GUI
public ShowColors2JFrame()

{

super("Using JColorChooser");

// create JPanel for display color
colorJPanel = new JPanel();
colorJPanel.setBackground(color);

// set up changeColorJButton and register its event handler
changeColorJButton = new JButton("Change Color");
changeColorJButton.addActionListener(

new ActionListener() // anonymous inner class

{

// display JColorChooser when user clicks button
public void actionPerformed(ActionEvent event)

{

color = JColorChooser.showDialog(
ShowColors2JFrame.this, "Choose a color", color);

// set default color, if no color is returned

if (color ==null)

color = Color.LIGHT_GRAY;

// change content pane's background color
colorJPanel.setBackground(color);

}// end method actionPerformed

}// end anonymous inner class

); // end call to addActionListener

Prepared by: Navin Kishor Sharma 57 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

add(colorJPanel, BorderLayout.CENTER); // add colorJPanel
add(changeColorJButton, BorderLayout.SOUTH); // add button

setSize(400, 130); // set frame size
setVisible(true); // display frame

}// end ShowColor2JFrame constructor
}// end class ShowColors2JFrame

//ShowColors2.java
// Choosing colors with JColorChooser.
import javax.swing.JFrame;

public class ShowColors2

{

// execute application

public static void main(String[] args)

{

ShowColors2JFrame application = new ShowColors2JFrame();
application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}// end main

}// end class ShowColors2

output
(2) Imitial application window (b) JColorChooser window
S |] 1) o
N
[Changs Coor [,]
- I,r’ 810013 1 5 A PR
P | ot S el sl A
Select a color from </ Rael | | [[CEE HH-HA o
one of the color | - T

swatches

{c) Application window after changing JPanel’s
background color

Prenww

u - . Sampis Tant Sample Ted
T [y oo Teut Samia Tet
. .:-lv.'i-\'.'.'l:n‘{luT&v

L Changa Color]

Using Menus with Frames

Menus are an integral part of GUIs. They allow the user to perform actions without unnecessarily

cluttering a GUI with extra components. In Swing GUls, menus can be attached

only to objects of the classes that provide method set)IMenuBar. Two such classes are JFrame and
JApplet. The classes used to declare menus are JMenuBar, JMenu, JMenu-Iltem, JCheckBoxMenultem

and class JRadioButtonMenultem.

Prepared by: Navin Kishor Sharma 58 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

|,~uq.| - | Eum |

Class JMenuBar (a subclass of JComponent) contains the methods necessary to manage a

menu bar, which is a container for menus.

Class JMenu (a subclass of javax.swing.JMenu-ltem) contains the methods necessary for managing
menus. Menus contain menu items and are added to menu bars or to other menus as submenus. When
a menu is clicked, it expands to show its list of menu items.

Class JMenultem (a subclass of javax.swing.AbstractButton) contains the methods necessary to manage
menu items. A menu item is a GUI component inside a menu that, when selected, causes an action
event. A menu item can be used to initiate an action, or it can be a submenu that provides more menu
items from which the user can select. Submenus are useful for grouping related menu items in a menu.
Class JCheckBoxMenultem (a subclass of javax.swing.JMenultem) contains the methods necessary to
manage menu items that can be toggled on or off. When a JCheck-BoxMenultem is selected, a check
appears to the left of the menu item. When the JCheck-BoxMenultem is selected again, the check is
removed.

Class JRadioButtonMenultem (a subclass of javax.swing.JMenultem) contains the methods necessary to
manage menu items that can be toggled on or off like JCheckBox-Menultems. When multiple
JRadioButtonMenultems are maintained as part of a Button-Group, only one item in the group can be
selected at a given time. When a JRadioButtonMenultem is selected, a filled circle appears to the left of
the menu item. When another JRadioButtonMenultem is selected, the filled circle of the previously
selected menu item is removed.

// MenuFrame.java

// Demonstrating menus.

import java.awt.Color;

import java.awt.Font;

import java.awt.BorderLayout;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.event.ltemListener;
import java.awt.event.ltemEvent;

import javax.swing.JFrame;

import javax.swing.JRadioButtonMenultem;
import javax.swing.JCheckBoxMenultem;
import javax.swing.JOptionPane;

import javax.swing.JLabel;

import javax.swing.SwingConstants;
import javax.swing.ButtonGroup;

import javax.swing.JMenu;

import javax.swing.JMenultem;

import javax.swing.JMenuBar;

public class MenuFrame extends JFrame

{

private final Color[] colorValues =

{ Color.BLACK, Color.BLUE, Color.RED, Color.GREEN };
private JRadioButtonMenultem[] coloritems; // color menu items
private JRadioButtonMenultem([] fonts; // font menu items
private JCheckBoxMenultem([] styleltems; // font style menu items

Prepared by: Navin Kishor Sharma 59 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

private JLabel displayJLabel; // displays sample text

private ButtonGroup fontButtonGroup; // manages font menu items
private ButtonGroup colorButtonGroup; // manages color menu items
private int style; // used to create style for font

// no-argument constructor set up GUI
public MenuFrame()

{

super("Using JMenus");

JMenu fileMenu = new JMenu("File"); // create file menu
fileMenu.setMnemonic('F'); // set mnemonicto F

// create About... menu item
JMenultem aboutltem = new JMenultem("About...");
aboutltem.setMnemonic('A'); // set mnemonic to A
fileMenu.add(aboutltem); // add about item to file menu
aboutltem.addActionListener(
new ActionListener() // anonymous inner class
{
// display message dialog when user selects About...
public void actionPerformed(ActionEvent event)
{
JOptionPane.showMessageDialog(MenuFrame.this,
"This is an example\nof using menus",
"About", JOptionPane.PLAIN_MESSAGE);
} // end method actionPerformed
} // end anonymous inner class
); // end call to addActionListener

JMenultem exitltem = new JMenultem("Exit"); // create exit item
exitltem.setMnemonic('x'); // set mnemonic to x
fileMenu.add(exitltem); // add exit item to file menu
exitltem.addActionListener(

new ActionListener() // anonymous inner class

{

// terminate application when user clicks exitltem
public void actionPerformed(ActionEvent event)

{
System.exit(0); // exit application
} // end method actionPerformed
} // end anonymous inner class

); // end call to addActionListener
JMenuBar bar = new JMenuBar(); // create menu bar
set)MenuBar(bar); //add menu bar to application

bar.add(fileMenu); // add file menu to menu bar

Prepared by: Navin Kishor Sharma 60 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

IMenu formatMenu = new JMenu("Format"); // create format menu
formatMenu.setMnemonic('r'); //set mnemonictor

// array listing string colors
String[] colors = { "Black", "Blue", "Red", "Green" };

JMenu colorMenu = new JMenu("Color"); // create color menu
colorMenu.setMnemonic('C'); //set mnemonicto C

// create radio button menu items for colors

colorltems = new JRadioButtonMenultem[colors.length];
colorButtonGroup = new ButtonGroup(); // manages colors
IltemHandler itemHandler = new ItemHandler(); // handler for colors

// create color radio button menu items
for (int count = 0; count < colors.length; count++)

{
colorltems[count] =
new JRadioButtonMenultem(colors[count]); // create item
colorMenu.add(colorltems[count]); // add item to color menu
colorButtonGroup.add(colorltems[count]); // add to group
colorltems[count].addActionListener(itemHandler);
}// end for

colorltems[0].setSelected(true); // select first Color item

formatMenu.add(colorMenu); // add color menu to format menu
formatMenu.addSeparator(); // add separator in menu

// array listing font names

String[] fontNames = { "Serif", "Monospaced", "SansSerif" };
JMenu fontMenu = new JMenu("Font"); // create font menu
fontMenu.setMnemonic('n'); // set mnemonic to n

// create radio button menu items for font names
fonts = new JRadioButtonMenultem[fontNames.length];
fontButtonGroup = new ButtonGroup(); // manages font names

// create Font radio button menu items

for (int count = 0; count < fonts.length; count++)

{
fonts[count] = new JRadioButtonMenultem(fontNames[count]);
fontMenu.add(fonts[count]); //add font to font menu
fontButtonGroup.add(fonts[count]); //add to button group
fonts[count].addActionListener(itemHandler); //add handler

}// end for

Prepared by: Navin Kishor Sharma 61 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

fonts[0].setSelected(true); // select first Font menu item
fontMenu.addSeparator(); // add separator bar to font menu

String[] styleNames = { "Bold", "Italic" }; // names of styles
styleltems = new JCheckBoxMenultem[styleNames.length];
StyleHandler styleHandler = new StyleHandler(); // style handler

// create style checkbox menu items
for (int count = 0; count < styleNames.length; count++)
{
styleltems[count] =
new JCheckBoxMenultem(styleNames[count]); // for style
fontMenu.add(styleltems[count]); // add to font menu
styleltems| count].addItemListener(styleHandler); // handler
}// end for

formatMenu.add(fontMenu); // add Font menu to Format menu
bar.add(formatMenu); // add Format menu to menu bar

// set up label to display text

displayJLabel = new JLabel("Sample Text", SwingConstants.CENTER);
displayJLabel.setForeground(colorValues[0]);
displayJLabel.setFont(new Font("Serif", Font.PLAIN, 72));

getContentPane().setBackground(Color.CYAN); // set background
add(displayJLabel, BorderLayout.CENTER); // add displaylLabel
}// end MenuFrame constructor

// inner class to handle action events from menu items
private class ItemHandler implements ActionListener
{
// process color and font selections
public void actionPerformed(ActionEvent event)
{
// process color selection
for (int count = 0; count < colorltems.length; count++)

{

if (colorltems| count].isSelected())

{

displayJLabel.setForeground(colorValues|[count]);
break;
}// endif
}// end for

// process font selection
for (int count = 0; count < fonts.length; count++)
{

if (event.getSource() == fonts[count])

Prepared by: Navin Kishor Sharma 62 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

{
displaylJLabel.setFont(
new Font(fonts[count].getText(), style, 72));
}// endif
}// end for

repaint(); // redraw application
}// end method actionPerformed
}// end class ItemHandler

// inner class to handle item events from checkbox menu items
private class StyleHandler implements ItemListener
{
// process font style selections
public void itemStateChanged(ItemEvent e)
{
String name = displayJLabel.getFont().getName(); // current Font
Font font; // new font based on user selections

// determine which CheckBoxes are checked and create Font
if (styleltems[0].isSelected() &&
styleltems[1].isSelected())

font = new Font(name, Font.BOLD + Font.ITALIC, 72);
else if (styleltems[0].isSelected())

font = new Font(name, Font.BOLD, 72);
else if (styleltems[1].isSelected())

font = new Font(name, Font.ITALIC, 72);
else

font = new Font(name, Font.PLAIN, 72);

displayJLabel.setFont(font);
repaint(); // redraw application
}// end method itemStateChanged
}// end class StyleHandler
}// end class MenuFrame

//MenuTest.java
//Testing MenuFrame.
import javax.swing.JFrame;

public class PopupTest
{

public static void main(String[] args)

{

PopupFrame popupFrame = new PopupFrame(); // create PopupFrame
popupFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
popupFrame.setSize(300, 200); // set frame size
popupFrame.setVisible(true); // display frame

Prepared by: Navin Kishor Sharma 63 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

}// end main
}// end class PopupTest

output

Menu

Mnemonic
characters

—— Menu bar

Expanded
submenu

4—

Menu items — |

Separator
line

JPopupMenu

Many of today’s computer applications provide so-called context-sensitive pop-up menus. In Swing,
such menus are created with class JPopupMenu (a subclass of JComponent). These menus provide
options that are specific to the component for which the popup trigger event was generated. On most
systems, the pop-up trigger event occurs when the user presses and releases the right mouse button.

//PopupFrame.java

//Demonstrating JPopupMenus.
import java.awt.Color;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JRadioButtonMenultem;
import javax.swing.JPopupMenu;
import javax.swing.ButtonGroup;

public class PopupFrame extends JFrame

{

private JRadioButtonMenultem[] items; // holds items for colors
private final Color[] colorValues =

{ Color.BLUE, Color.YELLOW, Color.RED }; // colors to be used
private JPopupMenu popupMenu; // allows user to select color
// no-argument constructor sets up GUI

Prepared by: Navin Kishor Sharma 64 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

public PopupFrame()

{
super("Using JPopupMenus");

IltemHandler handler = new ItemHandler(); // handler for menu items
String[] colors = { "Blue", "Yellow", "Red" }; // array of colors

ButtonGroup colorGroup = new ButtonGroup(); // manages color items
popupMenu = new JPopupMenu(); // create pop-up menu
items = new JRadioButtonMenultem[colors.length]; // color items

// construct menu item, add to pop-up menu, enable event handling
for (int count = 0; count < items.length; count++)

{

items[count] = new JRadioButtonMenultem(colors[count]);
popupMenu.add(items[count]); // add item to pop-up menu
colorGroup.add(items[count]); // add item to button group

items[count].addActionListener(handler); // add handler

}// end for

setBackground(Color.WHITE); // set background to white

// declare a MouselListener for the window to display pop-up menu
addMouselistener(

new MouseAdapter() // anonymous inner class

{

// handle mouse press event

public void mousePressed(MouseEvent event)

{

checkForTriggerEvent(event); // check for trigger
}// end method mousePressed

// handle mouse release event

public void mouseReleased(MouseEvent event)

{

checkForTriggerEvent(event); // check for trigger
}// end method mouseReleased

// determine whether event should trigger pop-up menu
private void checkForTriggerEvent(MouseEvent event)
{

if (event.isPopupTrigger())

popupMenu.show(

event.getComponent(), event.getX(), event.getY());

}// end method checkForTriggerEvent

}// end anonymous inner class

); // end call to addMouselListener

Prepared by: Navin Kishor Sharma 65 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

}// end PopupFrame constructor

// private inner class to handle menu item events

private class ItemHandler implements ActionListener

{

// process menu item selections

public void actionPerformed(ActionEvent event)
{

// determine which menu item was selected

for (inti=0;i<items.length; i++)

{

if (event.getSource() == items[i])

{

getContentPane().setBackground(colorValues[i]);
return;

}// endif

}// end for

}// end method actionPerformed

}// end private inner class ItemHandler

}// end class PopupFrame

//PopupTest.java
// Testing PopupFrame.
import javax.swing.JFrame;

public class PopupTest
{

public static void main(String[] args)

{

PopupFrame popupFrame = new PopupFrame(); // create PopupFrame
popupFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

popupFrame.setSize(300, 200); // set frame size
popupFrame.setVisible(true); // display frame
}// end main

}// end class PopupTest

output

(==

Blue
Yellow

Red
A

Prepared by: Navin Kishor Sharma

66

Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

JTabbedPane

A JTabbedPane arranges GUI components into layers, of which only one is visible at a time. Users access
each layer via a tab—similar to folders in a file cabinet. When the user clicks a tab, the appropriate layer
is displayed. The tabs appear at the top by default but also can be positioned at the left, right or bottom
of the JTabbedPane. Any component can be placed on a tab. If the component is a container, such as a
panel, it can use any layout manager to lay out several components on the tab. Class JTabbedPane is a
subclass of JComponent. The application below creates one tabbed pane with three tabs. Each tab
displays one of the JPanels—panell, panel2 or panel3.

// JTabbedPaneFrame.java

// Demonstrating JTabbedPane
import java.awt.BorderLayout;
import java.awt.Color;

import javax.swing.JFrame;

import javax.swing.JTabbedPane;
import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JButton;

import javax.swing.SwingConstants;

public class JTabbedPaneFrame extends JFrame
{

// set up GUI

public JTabbedPaneFrame()

{

super("JTabbedPane Demo ");
JTabbedPane tabbedPane = new JTabbedPane(); // create JTabbedPane

// set up panell and add it to JTabbedPane

JLabel labell = new JLabel("panel one", SwingConstants.CENTER);
JPanel panell = new JPanel(); // create first panel

panell.add(labell); // add label to panel

tabbedPane.addTab("Tab One", null, panell, "First Panel");

// set up panel2 and add it to JTabbedPane

JLabel label2 = new JLabel("panel two", SwingConstants.CENTER);
JPanel panel2 = new JPanel(); // create second panel
panel2.setBackground(Color.YELLOW); // set background to yellow
panel2.add(label2); // add label to panel

tabbedPane.addTab("Tab Two", null, panel2, "Second Panel");

// set up panel3 and add it to JTabbedPane

JLabel label3 = new JLabel("panel three");

JPanel panel3 = new JPanel(); // create third panel
panel3.setLayout(new BorderLayout()); // use borderlayout
panel3.add(new JButton("North"), BorderLayout.NORTH);

Prepared by: Navin Kishor Sharma 67 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

panel3.add(new JButton("West"), BorderLayout.WEST);
panel3.add(new JButton("East"), BorderLayout.EAST);
panel3.add(new JButton("South"), BorderLayout.SOUTH);
panel3.add(label3, BorderLayout.CENTER);
tabbedPane.addTab("Tab Three", null, panel3, "Third Panel");

add(tabbedPane); // add JTabbedPane to frame
}// end JTabbedPaneFrame constructor
}// end class JTabbedPaneFrame

// JTabbedPaneDemo.java
// Demonstrating JTabbedPane.
import javax.swing.JFrame;

public class JTabbedPaneDemo
{
public static void main(String[] args)
{
JTabbedPaneFrame tabbedPaneFrame = new JTabbedPaneFrame();
tabbedPaneFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
tabbedPaneFrame.setSize(250, 200); // set frame size
tabbedPaneFrame.setVisible(true); // display frame
}// end main
}// end class JTabbedPaneDemo

output
' S o S Sl o
| &) JTabbedPane Derme | 1 [|&:| JTabbedPane Derne = | -E1- [Eas |;>|JTabbe;dF'ane Demo =
J Tab Cne I Tab Two T Tab Three | |. Tab Cne || TabTwo || Tab Three | | Tab One | Tab Two T Tab Thres
panel ong pansl two | Warth
Wesl |panel thres East
[South

Tables

A table is a component that displays rows and columns of data. You can drag the cursor on column
boundaries to resize columns. You can also drag a column to a new position. Tables are implemented by
the JTable class, which extends JComponent.

One of its constructors is shown here:

JTable(Object data[][], Object colHeads][])

Here, data is a two-dimensional array of the information to be presented, and colHeads is a one-
dimensional array with the column headings.

Here are the steps for using a table in a Frame:

1. Create a JTable object.

Prepared by: Navin Kishor Sharma 68 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

2. Create a JScrollPane object. (The arguments to the constructor specify the table and the policies for
vertical and horizontal scroll bars.)

3. Add the table to the scroll pane.

4. Add the scroll pane to JFrame

//TableFrame.java

import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import java.awt.BorderLayout;
import javax.swing.*;

public class TableFrame extends JFrame{
public TableFrame()
{
super("Testing Table");
setLayout(new BorderlLayout());
// Initialize column headings
final String[] colHeads = { "Name", "Phone", "Fax" };
// Initialize data
final Object[][] data = {
{"Gail", "4567", "8675" },
{"Ken", "7566", "5555" },
{"Viviane", "5634", "5887" },
{"Melanie", "7345", "9222" },
{"Anne", "1237", "3333"},
{"John", "5656", "3144" },
{"Matt", "5672","2176" },
{"Claire", "6741", "4244" },
{"Erwin", "9023", "5159" },
{"Ellen", "1134", "5332" },
{"Jennifer", "5689", "1212" },
{"Ed", "9030", "1313" },
{"Helen", "6751", "1415" }
2
// Create the table
JTable table = new JTable(data, colHeads);
// Add table to a scroll pane
int v = ScrollPaneConstants.VERTICAL SCROLLBAR_AS NEEDED;
int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS NEEDED;
JScrollPane scrollPane = new JScrollPane(table, v, h);
// Add scroll pane to Frame
add(scrollPane, BorderLayout.CENTER);
}
}

//TableDemo.java
import javax.swing.JFrame;

Prepared by: Navin Kishor Sharma 69 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

public class TableDemo
{
public static void main(String[] args)
{
TableFrame tableFrame = new TableFrame();
tableFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
tableFrame.setSize(250, 200); // set frame size
tableFrame.setVisible(true); // display frame
}// end main
}// end class Table

output
;
Name Fax Phone \
Gail 8675 4567 -
Ken 5555 7566
Viviane 5887 5634
Melanie 9222 7345 3
Anne 3332 1237
John 3144 5656 P
Matt 2176 5672
Claire 4244 6741 (=l
Erwin 5159 an23 >
A\
Trees

A tree is a component that presents a hierarchical view of data. A user has the ability to expand or
collapse individual subtrees in this display. Trees are implemented in Swing by the JTree class, which
extends JComponent.

A JTree object generates events when a node is expanded or collapsed. The addTreeExpansionListener(
) and removeTreeExpansionListener() methods allow listeners to register and unregister for these
notifications. The signatures of these methods are :

void addTreeExpansionListener(TreeExpansionListener tel)

void removeTreeExpansionListener(TreeExpansionListener tel)

The getPathForLocation() method is used to translate a mouse click on a specific point of the tree to a
tree path. Its signature is shown here:

TreePath getPathForLocation(int x, int y)

Here, x and y are the coordinates at which the mouse is clicked. The return value is a TreePath object
that encapsulates information about the tree node that was selected by the user.

The TreeNode interface declares methods that obtain information about a tree node. For example, it is
possible to obtain a reference to the parent node or an enumeration of the child nodes. The
MutableTreeNode interface extends TreeNode. It declares methods that can insert and remove child
nodes or change the parent node.

The DefaultMutableTreeNode class implements the MutableTreeNode interface. It represents a node
in a tree. One of its constructors is shown here:

Prepared by: Navin Kishor Sharma 70 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new tree node doesn’t have a parent or
children.

To create a hierarchy of tree nodes, the add() method of DefaultMutableTreeNode can be used. Its
signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to the current node.

Here are the steps that should be followed to use a tree in a JFrame:

1. Create a JTree object.

2. Create a JScrollPane object. (The arguments to the constructor specify the tree and the policies for
vertical and horizontal scroll bars.)

3. Add the tree to the scroll pane.

4. Add the scroll pane to the JFrame.

//TreeFrame.java

import javax.swing.JFrame;

import javax.swing.JScrollPane;
import java.awt.BorderLayout;

import javax.swing.*;

import javax.swing.tree.*;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

public class TreeFrame extends JFrame{

private JTextField textField ;

private JTree tree;

public TreeFrame(){

super("Testing Tree");

setLayout(new BorderLayout());

// Create top node of tree

DefaultMutableTreeNode top = new DefaultMutableTreeNode("Options");
// Create subtree of "A"

DefaultMutableTreeNode a = new DefaultMutableTreeNode("A");
top.add(a);

DefaultMutableTreeNode al = new DefaultMutableTreeNode("A1");
a.add(al);

DefaultMutableTreeNode a2 = new DefaultMutableTreeNode("A2");
a.add(a2);

// Create subtree of "B"

DefaultMutableTreeNode b = new DefaultMutableTreeNode("B");

top.add(b);

DefaultMutableTreeNode b1 = new DefaultMutableTreeNode("B1");

b.add(b1);

DefaultMutableTreeNode b2 = new DefaultMutableTreeNode("B2");

b.add(b2);

DefaultMutableTreeNode b3 = new DefaultMutableTreeNode("B3");

b.add(b3);

Prepared by: Navin Kishor Sharma 71 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

// Create tree
tree = new JTree(top);
// Add tree to a scroll pane
int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;
int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS NEEDED;
JScrollPane scrollPane = new JScrollPane(tree, v, h);
// Add scroll pane to Frame
add(scrollPane, BorderLayout.CENTER);
// Add text field to Frame
textField = new JTextField("", 20);
add(textField , BorderLayout.SOUTH);
// Anonymous inner class to handle mouse clicks
tree.addMouselistener(new MouseAdapter() {
public void mouseClicked(MouseEvent me) {
doMouseClicked(me);
}
1;
}

void doMouseClicked(MouseEvent me) {
TreePath tp = tree.getPathForLocation(me.getX(), me.getY());

if(tp != null)
textField.setText(tp.toString());
else

textField.setText("");

}

}

//TreeDemo.java
import javax.swing.JFrame;

public class TreeDemo

{

public static void main(String[] args)

{

TreeFrame treeFrame = new TreeFrame();
treeFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
treeFrame.setSize(250, 200); // set frame size
treeFrame.setVisible(true); // display frame
}// end main
}// end class Tree

output

Prepared by: Navin Kishor Sharma 72 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

7

| £/ Testing Tree l elE] |-!55-J‘

] Options
¢ A

Al
A2

L3

¢ =18
[B1
(B2
[ifeal

[Options, B, B3]

Creating GUI components in NetBeans using drag and drop

Step 1: Create a New Project

Step 2: Choose General -> Java Application

Step 3: Set a Project Name"CelsiusConverterProject".Make sure to deselect the "Create Main Class"
checkbox; leaving this option selected generates a new class as the main entry point for the application,
but our main GUI window (created in the next step) will serve that purpose, so checking this box is not
necessary. Click the "Finish" button when you are done.

Step 4: Add a JFrame Form-Now right-click the CelsiusConverterProject name and choose New ->
JFrame Form (JFrame is the Swing class responsible for the main frame for your application.)

Step 5: Name the GUI Class-Next type CelsiusConverterGUI as the class name, and CelsiusConverter as
the package name. The remainder of the fields should automatically be filled in, as shown above. Click
the Finish button when you are done.

When the IDE finishes loading, the right pane will display a design-time, graphical view of the
CelsiusConverterGUI. It is on this screen that you will visually drag, drop, and manipulate the various
Swing components.

NetBeans IDE Basics

It is not necessary to learn every feature of the NetBeans IDE before exploring its GUI creation
capabilities. In fact, the only features that you really need to understand are the Palette, the Design
Area, the Property Editor, and the Inspector.

The Palette

The Palette contains all of the components offered by the Swing API(JLabel is a text label, JList is a drop-
down list, etc.).

The Design Area

The Design Area is where you will visually construct your GUI. It has two views: source view, and design
view. Design view is the default, as shown below. You can toggle between views at any time by clicking
their respective tabs.

The Property Editor

The Property Editor does what its name implies: it allows you to edit the properties of each component.
The Property Editor is intuitive to use; in it you will see a series of rows — one row per property — that
you can click and edit without entering the source code directly.

The Inspector

The Inspector provides a graphical representation of your application's components. We will use the
Inspector only once, to change a few variable names to something other than their defaults.

Creating the CelsiusConverter GUI

Prepared by: Navin Kishor Sharma 73 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

This section explains how to use the NetBeans IDE to create the application's GUI. As you drag each
component from the Palette to the Design Area, the IDE auto-generates the appropriate source code.
Step 1: Set the Title

First, set the title of the application's JFrame to "Celsius Converter", by single-clicking the JFrame in the
Inspector:Then, set its title with the Property Editor:

: [JFrame] - Properties m- 52
Event= Code

=IProperties -
defaultCloseOperation |EXIT_ON_CLOSE .
title Celsius Converter (=
=l Cther Properties

alwaysOnTop = [
alwaysOonTopSupported |:|

background [[240,240,240] E]
bounds «Mat Set= ()
cursar [Default Cursar ~ |
enabled E]
extendedState 0 [:]
focusCycleRoat [;] -
title i
(java.lang.string) title

Step 2: Add a JTextField
Next, drag a JTextField from the Palette to the upper left corner of the Design Area. As you approach the
upper left corner, the GUI builder provides visual cues (dashed lines) that suggest the appropriate

spacing. Using these cues as a guide, drop a JTextField into the upper left hand corner of the window as
shown below:

Prepared by: Navin Kishor Sharma 74 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

CelsiusﬂunvederGUI.java* H| @E
Source |Design || % | B =TI | = i

Q E (]
¥ jTextField1 &
o =] [=]

Step 3: Add a JLabel
Step 4: Add a JButton
Step 5: Add a Second JLabel

CelsiusCunverterGUl.ja\ra* El @E
Source | Design | % | e T In | o ik
o

0O
iButtonl Silabel20
O O =]

Adjusting the CelsiusConverter GUI

Prepared by: Navin Kishor Sharma 75 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Step 1: Set the Component Text

First, double-click the JTextField and JButton to change the default text that was inserted by the IDE.
When you erase the text from the JTextField, it will shrink in size as shown below. Change the text of the
JButton from "JButton1" to "Convert." Also change the top JLabel text to "Celsius" and the bottom to
"Fahrenheit."

Step 2: Set the Component Size

Next, shift-click the JTextField and JButton components. This will highlight each showing that they are
selected. Right-click (control-click for mac users) Same Size -> Same Width. The components will now be
the same width, as shown below. When you perform this step, make sure that JFrame itself is not also
selected. If it is, the Same Size menu will not be active.

Step 3: Remove Extra Space

Finally, grab the lower right-hand corner of the JFrame and adjust its size to eliminate any extra
whitespace. Note that if you eliminate all of the extra space (as shown below) the title (which only
appears at runtime) may not show completely. The end-user is free to resize the application as desired,
but you may want to leave some extra space on the right side to make sure that everything fits correctly.
Experiment, and use the screenshot of the finished GUI as a guide.

EI CelsiusConverterGUl java * E| 2B E

Source | U & | ==

Celsius

Conwvert | Fahrenheit

Adding the Application Logic

Step 1: Change the Default Variable Names

The figure below shows the default variable names as they currently appear within the Inspector. For
each component, the variable name appears first, followed by the object's type in square brackets. For
example, jTextField1l [JTextField] means that "jTextField1" is the variable name and "JTextField" is its

type.

Prepared by: Navin Kishor Sharma 76 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

: Inspector 4l # | : Nawigator - [JFrame]
B Form CelsiusCanverkerGUI
& Other Components
Elj [IFrame]
T {TextField] [ITextField]
-wet jLabell [JLabel]
[jButtont [JButton]
Lo fLabel2 [Label]

The default names are not very relevant in the context of this application, so it makes sense to change
them from their defaults to something that is more meaningful. Right-click each variable name and
choose "Change variable name." When you are finished, the variable names should appear as follows:
: Inspector 1l E|E Havigator
B Form CelsiusCanverkerGUI
Ej Other Components
Elj [IFrame]
- tempTextField [JTextField]
> ------ wet celsiusLabel [JLabel]
> ------ (=l canvertButton [JBukkon]
‘o FahrenheitLabel [ILabel]

Step 2: Register the Event Listeners

When an end-user interacts with a Swing GUI component (such as clicking the Convert button), that
component will generate a special kind of object — called an event object — which it will then broadcast
to any other objects that have previously registered themselves as listeners for that event. The
NetBeans IDE makes event listener registration extremely simple:

Prepared by: Navin Kishor Sharma 77 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

wild Run CV5 Tools Window Help

103 PP D

CelsiuannverterGUl.java* % AF E ! Palette
Source | Design | % B =TI | = =) Swing
ke JLabel
(& = JToggleButton
Celsius
e e - #— JR.adioButton
o| Converk]EFahrenhe.'Lt = IComboBox
o o Edit Text
. = JTextFizld
Change Variable Mame ... — CEe
Events Action 3 actionPerformed
Ancestor b ||GC JScrollBar
Align r
S Change P || EE IJMenuBar
Anchor k
Component P || o 1slider
Luto Resizing r :
Caontainer r
Same Size r : convertButton [JButl
Focus »
Set Default Size i Everts
Hierarchy] o .
Space Sround Component.., . roperties
. . HizrarchyBounds P .
action
Maowe Up InputMethod L | -
KA oree! o Trams p |[convertButton [JButt
Key k
i Cut Chrl+¥
————— Mouse ¥
Copy Ctrl+C]
Mousebotion r
Delete Delete
MouseWheel r
Properties PropertyChange P
YetoableChange P

In the Design Area, click on the Convert button to select it. Make sure that only the Convert button is
selected (if the JFrame itself is also selected, this step will not work.) Right-click the Convert button and
choose Events -> Action -> ActionPerformed. This will generate the required event-handling code,
leaving you with empty method bodies in which to add your own functionality:

Prepared by: Navin Kishor Sharma 78 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

CelsiusConverterGUl.java* El @E‘
Source | Desion |4 = | @ 7 F | L% |E | EE|e o |x

= f** This method is called from within the constructor to

* initialize the form.

* WAPNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.

L ‘!‘J,n’

Generated Code

= private void convertButtonActionPerformed|java.awt.event.ActionEvent evt) |
J4 TODO add your handling code here:
- }

m

= private void tempTextFieldActionPerformedijava.awt.event.ActionEvent evt) |
J¢4 TODO add your handling code here:
- }

= fEE

* [@param args the command line arguments
L x4 —
87:1 |mus|

Step 3: Add the Temperature Conversion Code
The final step is to simply paste the temperature conversion code into the empty method body.
//Parse degrees Celsius as a double and convert to Fahrenheit.
int tempFahr = (int)((Double.parseDouble(tempTextField.getText()))
*1.8+32);
fahrenheitLabel.setText(tempFahr + " Fahrenheit");
Simply copy this code and paste it into the convertButtonActionPerformed method as shown below:

CelsiusConverterGUl.java* ﬁ| @E
Source | Design |<]:| ¢|%QFDD|OD .4>‘}'}<;,|4>EE<}=|‘}£ 4§| @ @ | o _-
ol |
S**% This method is called from within the constructor to
* initialize the form.
* WAPNING: Do NOT modify this code. The content of this method is
* always regensrated by the Form Editor.
=/
3
=] private void convertButtonActionPerformed (java.awt.event.ActionEvent svt) |
//Parse degrees Celsius as a double and conwvert to Fahrenheit. £
int tempFahr = (int) ((Double.parseDouble |tempTextField.getText ())) * 1.8 + 32);
fahrenheitLabel.setText (tempFahr + " Fahrenheit”)
L]_ e
= private void tempTextFieldActionPerformed java.awt.event.ActionEvent evt) |
J#4 TODO add wour handling code here:
- i
JEE il
BE:83 |
Step 4: Run the Application
Prepared by: Navin Kishor Sharma 79 Unit 2:User Interface using Swing

Downloaded from CSIT Tutor

Unit 3- Database Connectivity

A database is an organized collection of data. There are many different strategies for organizing data to
facilitate easy access and manipulation. A database management system(DBMS) provides mechanisms
for storing, organizing, retrieving and modifying data form any users. Database management systems
allow for the access and storage of data without concern for the internal representation of data.

Today’s most popular database systems are relational databases.A language called SQL—pronounced
“sequel,” or as its individual letters—is the international standard language used almost universally with
relational databases to perform queries (i.e., to request information that satisfies given criteria) and to
manipulate data.

Some popular relational database management systems (RDBMSs) are Microsoft SQL Server, Oracle,
Sybase, IBM DB2, Informix, PostgreSQL and MySQL. The JDK now comes with a pure-Java RDBMS called
Java DB—Oracles’s version of Apache Derby.

Java programs communicate with databases and manipulate their data using the Java Database
Connectivity (JDBC™) API. A JDBC driver enables Java applications to connect to a database in a
particular DBMS and allows you to manipulate that database using the JDBC API.

JDBC Introduction

The JDBC API is a Java API that can access any kind of tabular data, especially data stored in a Relational
Database.

JDBC helps to write Java applications that manage these three programming activities:
) Connect to a data source, like a database
e Send queries and update statements to the database
e Retrieve and process the results received from the database in answer to your query

JDBC includes four components:

The JDBC APl — The JDBC™ API provides programmatic access to relational data from the Java™
programming language. Using the JDBC API, applications can execute SQL statements, retrieve results,
and propagate changes back to an underlying data source. The JDBC API can also interact with multiple
data sources in a distributed, heterogeneous environment.The JDBC API is part of the Java platform,
which includes the Java™ Standard Edition (Java™ SE) and the Java™ Enterprise Edition (Java™ EE). The
JDBC 4.0 APl is divided into two packages: java.sql and javax.sql. Both packages are included in the Java
SE and Java EE platforms.

JDBC Driver Manager — The JDBC DriverManager class defines objects which can connect Java

applications to a JDBC driver. DriverManager has traditionally been the backbone of the JDBC
architecture. It is quite small and simple.

Downloaded from CSIT Tutor

JDBC Test Suite — The JDBC driver test suite helps you to determine that JDBC drivers will run your
program. These tests are not comprehensive or exhaustive, but they do exercise many of the important
features in the JDBC API.

JDBC-ODBC Bridge — The Java Software bridge provides JDBC access via ODBC drivers. Note that you
need to load ODBC binary code onto each client machine that uses this driver. As a result, the ODBC
driver is most appropriate on a corporate network where client installations are not a major problem, or
for application server code written in Java in a three-tier architecture.

Java application

A

* JDBC API

JDBC Driver Manager

t t JDBC Driver API
Vendor-
JDBC/ODBC supplied
bridge JDBC driver
> e
s
OoDBC
driver Database
~—
G ey
~
Database
T R
fig.JDBC-to-database communication path
JDBC Driver Types

JDBC drivers are classified into the following types:

Downloaded from CSIT Tutor

e A type 1 driver translates JDBC to ODBC and relies on an ODBC driver to communicate with the
database. Sun includes one such driver, the JDBC/ODBC bridge, with the JDK. However, the
bridge requires deployment and proper configuration of an ODBC driver. When JDBC was first
released, the bridge was handy for testing, but it was never intended for production use. At this
point, plenty of better drivers are available, and is advised against using the JDBC/ODBC bridge.

e A type 2 driver is written partly in Java and partly in native code; it communicates with the
client APl of a database. When you use such a driver, you must install some platform-specific
code in addition to a Java library.

e A type 3 driver is a pure Java client library that uses a database-independent protocol to
communicate database requests to a server component, which then translates the requests into
a database-specific protocol. This can simplify deployment since the database-dependent code
is located only on the server.

e Atype 4 driver is a pure Java library that translates JDBC requests directly to a database-specific
protocol.

Most database vendors supply either a type 3 or type 4 driver with their database. Furthermore, a
number of third-party companies specialize in producing drivers with better standards conformance,
support for more platforms, better performance, or, in some cases, simply better reliability than the
drivers that are provided by the database vendors.

In summary, the ultimate goal of JDBC is to make possible the following:

Programmers can write applications in the Java programming language to access any database, using
standard SQL statementsor even specialized extensions of SQLwhile still following Java language
conventions.

Database vendors and database tool vendors can supply the low-level drivers. Thus, they can optimize
their drivers for their specific products.

Typical Uses of JDBC
The traditional client/server model has a rich GUI on the client and a database on the server (figure

below). In this model, a JDBC driver is deployed on the client.

Java Application
JDBEC

Client Machine

I DEMS -proprietary protocol

Database server

o

fig.Two-tier Architecture for Data Access.

Downloaded from CSIT Tutor

However, the world is moving away from client/server and toward a "three-tier model" or even more
advanced "n-tier models." In the three-tier model, the client does not make database calls. Instead, it
calls on a middleware layer on the server that in turn makes the database queries. The three-tier model
has a couple of advantages. It separates visual presentation (on the client) from the business logic (in
the middle tier) and the raw data (in the database). Therefore, it becomes possible to access the same
data and the same business rules from multiple clients, such as a Java application or applet or a web
form.

Communication between the client and middle tier can occur through HTTP (when you use a web
browser as the client), RMI (when you use an application), or another mechanism. JDBC manages the
communication between the middle tier and the back-end database. Figure below shows the basic three
tier architecture.

Jawa appletor

HIML browser Client machine { GUI)

: HTTP, RML, CORB A, or other calls

Application Server Server hine
| Tava) {business logich

JDBC
DBMS -proprietary protocol

Database server

fig.Three-tier Architecture for Data Access

Database connections in Java using JDBC and Netbeans IDE
In order to make a JDBC connection to MySQL database one needs to downlad the MySQL Connector/J.
Itis also expected that you have Netbeans 7+ installed on your machine.

Extract the zip file to a folder, you’ll see file ‘mysql-connector-java-5.1.20-bin.jar’ which is the library file
that we want. Just copy the file to the library folder, for example to “C:\Program Files\Java\jdk1.7\lib”
also to the “C:\Program Files\Java\jdk1.7\jre\lib directory.

Next, create a new Java project on NetBeans named ‘DatabaseConnectivity'.

Right click the project and select 'properties' then under the 'categories’' click on 'libraries' and click on
the 'Add JAR/Folder' and then browse to “C:\Program Files\Java\jdk1.7\lib\mysql-connector-java-
5.1.20-bin.jar”, click on 'open 'and 'ok'.

In the services tab of the netbeans, right click the database and click on 'new connection'. Under the
'new connection wizard', click on the 'Driver Combobox' and select the 'mySQL Connector/J driver' and
click on 'next' untill the wizard completes.

Instructions for Setting Up a MySQL User Account

For the MySQL examples to execute correctly, you need to set up a user account that allows

users to create, delete and modify a database. After MySQL is installed, follow the (these steps assume
MySQL is installed in its default installation directory):

Downloaded from CSIT Tutor

1. Open a Command Prompt and start the database server by executing the command

mysqld.exe. This command has no output—it simply starts the MySQL

server. Do not close this window—doing so terminates the server.

2. Next, you’ll start theMySQL monitor so you can set up a user account, open another

Command Prompt and execute the command

mysql -h localhost -u root

The -h option indicates the host (i.e., computer) on which the MySQL server is running—in this case your
local computer (localhost). The -u option indicates the user account that will be used to log in to the
server—root is the default user account that is created during installation to allow you to configure the
server. Once you've logged in, you'll see a mysql> prompt at which you can type commands to interact
with the MySQL server.

3.At the mysql> prompt, type

USE mysql;

and press Enter to select the built-in database named mysql, which stores server information, such as
user accounts and their privileges for interacting with the server. Each command must end with a
semicolon. To confirm the command, MySQL issues the message “Database changed.”

4. Next, you’ll add the user account to the mysql built-in database. The mysql database contains a table
called user with columns that represent the user’s name, password and various privileges. To create the
user account 'abc'with the password 'pqr', execute the following commands from the mysql> prompt:
create user 'abc'@'localhost’ identified by 'pqr’;

grant select, insert, update, delete, create, drop, references,

execute on *.* to 'abc'@'localhost’;

5.Type the command

exit;

to terminate the MySQL monitor.

Connecting to and Querying a Database

The example below performs a simple query on the books database that retrieves the entire Authors
table and displays the data. The program illustrates connecting to the database, querying the database
and processing the result.The discussion that follows presents the key JDBC aspects of the program.

// DisplayAuthors.java

// Displaying the contents of the Authors table.
import java.sql.Connection;

import java.sql.Statement;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

public class DisplayAuthors

{

// database URL

static final String DATABASE_URL = "jdbc:mysql://localhost/books";
// launch the application

public static void main(String args[])

{

Connection connection = null; // manages connection

Downloaded from CSIT Tutor

Statement statement = null; // query statement
ResultSet resultSet = null; // manages results

// connect to database books and query database

try

{

// establish connection to database

connection = DriverManager.getConnection(
DATABASE_URL, "root", "");

// create Statement for querying database

statement = connection.createStatement();

// query database

resultSet = statement.executeQuery(

"SELECT AuthorlD, FirstName, LastName FROM Authors");
// process query results

ResultSetMetaData metaData = resultSet.getMetaData();
int numberOfColumns = metaData.getColumnCount();
System.out.printin("Authors Table of Books Database:\n");

for (inti=1;i<=numberOfColumns; i++)
System.out.printf("%-8s\t",metaData.getColumnName(i));
System.out.printin();

while(resultSet.next())

{

for (inti=1;i<=numberOfColumns; i++)
System.out.printf("%-8s\t",resultSet.getObject(i));
System.out.printin();

}// end while

}// end try

catch(SQLException sqlException)

{

sqlException.printStackTrace();

}// end catch

finally // ensure resultSet, statement and connection are closed
{

try

{

resultSet.close();

statement.close();

connection.close();

}// end try

catch (Exception exception)

{

exception.printStackTrace();

}// end catch

}// end finally

}// end main

Downloaded from CSIT Tutor

}// end class DisplayAuthors

output
suthors Table of Books Database:
AuthorID FirstMame LastMams
1 Harvey Deitel
2 Paul Deitel
3 Andrew Goldberg
4 Dawid Choffnes

Connecting to the Database

An object that implements interface Connection manages the connection between the Java program
and the database. Connection objects enable programs to create SQL statements that manipulate
databases. The program initializes connection with the result of a call to static method getConnection of
class DriverManager (package java.sql), which attempts to connect to the database specified by its
URL.Method get-Connection takes three arguments—a String that specifies the database URL, a String
that specifies the username and a String that specifies the password. The URL locates the database
(possibly on a network or in the local file system of the computer). The URL
jdbc:mysql://localhost/books specifies the protocol for communication (jdbc), the subprotocol for
communication (mysql) and the location of the database (//localhost/books, where localhost is the
host running the MySQL server and books is the database name). The subprotocol mysql indicates that
the program uses a MySQL-specific subprotocol to connect to the MySQL database. If the
DriverManager cannot connect to the database, method getConnection throws a SQLException
(package java.sql).

Figure below lists the JDBC driver names and database URL formats of several popular RDBMSs.

MySQL jdbc:mysql://hostname: portNumber/ databaseName

ORACLE jdbc:oracle: thin:@hostname: portNumber: databaseName

DB2 jdbc: db2 : hestname: portiNumber/ databaseName

PostgreSQL jdbc:postaresql :// hostname: portNumber/ databaseName

Java DB/Apache jdbc: derby : dataBaseName (embedded)|

Derby jdbc:derby://hostname: portNumber/ databaseName (network)
Microsoft SQL jdbc:sqlserver://bostname: porf:’\"mnbc'r: databaseName=dataBaseName
Server

Sybase jdbc:sybase:Tds: hostname: port:Number/ databaseName

Creating a Statement for Executing Queries

Connection method createStatement is invoked to obtain an object that implements interface
Statement (package java.sql). The program uses the Statement object to submit SQL statements to the
database.

Executing a Query

The Statement object’s executeQuery method is used to submit a query that selects all the author
information from table Authors. This method returns an object that implements interface ResultSet and
contains the query results. The ResultSet methods enable the program to manipulate the query result.
Processing a Query’s ResultSet

The metadata describes the ResultSet’s contents. Programs can use metadata programmatically to
obtain information about the ResultSet’s column names and types. ResultSetMetaData method

Downloaded from CSIT Tutor

getColumnCount is used to retrieve the number of columns in the ResultSet.

Retrieving and Modifying Values from Result Sets

A ResultSet object is a table of data representing a database result set, which is usually generated by
executing a statement that queries the database. A ResultSet object can be created through any object
that implements the Statement interface, including PreparedStatement, CallableStatement, and
RowSet.

You access the data in a ResultSet object through a cursor. Note that this cursor is not a database cursor.
This cursor is a pointer that points to one row of data in the ResultSet. Initially, the cursor is positioned
before the first row. The method ResultSet.next moves the cursor to the next row. This method returns
false if the cursor is positioned after the last row. This method repeatedly calls the ResultSet.next
method with a while loop to iterate through all the data in the ResultSet.

ResultSet Interface

The ResultSet interface provides methods for retrieving and manipulating the results of executed
queries, and ResultSet objects can have different functionality and characteristics. These characteristics
are type, concurrency, and cursor holdability.

ResultSet Types

The type of a ResultSet object determines the level of its functionality in two areas: the ways in which
the cursor can be manipulated, and how concurrent changes made to the underlying data source are
reflected by the ResultSet object.

The sensitivity of a ResultSet object is determined by one of three different ResultSet types:

(a)TYPE_FORWARD_ONLY: The result set cannot be scrolled; its cursor moves forward only, from before
the first row to after the last row. The rows contained in the result set depend on how the underlying
database generates the results. That is, it contains the rows that satisfy the query at either the time the
query is executed or as the rows are retrieved.

(b)TYPE_SCROLL_INSENSITIVE: The result can be scrolled; its cursor can move both forward and
backward relative to the current position, and it can move to an absolute position. The result set is
insensitive to changes made to the underlying data source while it is open. It contains the rows that
satisfy the query at either the time the query is executed or as the rows are retrieved.
(c)TYPE_SCROLL_SENSITIVE: The result can be scrolled; its cursor can move both forward and backward
relative to the current position, and it can move to an absolute position. The result set reflects changes
made to the underlying data source while the result set remains open.

The default ResultSet type is TYPE_FORWARD_ONLY.

Note: Not all databases and JDBC drivers support all ResultSet types. The method
DatabaseMetaData.supportsResultSetType returns true if the specified ResultSet type is supported and
false otherwise.
ResultSet Concurrency
The concurrency of a ResultSet object determines what level of update functionality is supported.
There are two concurrency levels:
CONCUR_READ_ONLY: The ResultSet object cannot be updated using the ResultSet interface.
CONCUR_UPDATABLE: The ResultSet object can be updated using the ResultSet interface.

The default ResultSet concurrency is CONCUR_READ_ONLY.

Downloaded from CSIT Tutor

Note: Not all JDBC drivers and databases support concurrency. The method
DatabaseMetaData.supportsResultSetConcurrency returns true if the specified concurrency level is
supported by the driver and false otherwise.

Cursor Holdability

Calling the method Connection.commit can close the ResultSet objects that have been created during
the current transaction. In some cases, however, this may not be the desired behavior. The ResultSet
property holdability gives the application control over whether ResultSet objects (cursors) are closed
when commit is called.

The following ResultSet constants may be supplied to the Connection methods createStatement,
prepareStatement, and prepareCall:

HOLD_CURSORS_OVER_COMMIT: ResultSet cursors are not closed; they are holdable: they are held
open when the method commit is called. Holdable cursors might be ideal if your application uses mostly
read-only ResultSet objects.

CLOSE_CURSORS_AT_COMMIT: ResultSet objects (cursors) are closed when the commit method is
called. Closing cursors when this method is called can result in better performance for some
applications.

The default cursor holdability varies depending on your DBMS.

Retrieving Column Values from Rows
The ResultSet interface declares getter methods (for example, getBoolean and getLong) for retrieving

column values from the current row. You can retrieve values using either the index number of the
column or the alias or name of the column. The column index is usually more efficient. Columns are
numbered from 1. For maximum portability, result set columns within each row should be read in left-
to-right order, and each column should be read only once.

try

{

// create Statement for querying database
statement = connection.createStatement();

// query database
resultSet = statement.executeQuery(
"SELECT AuthorlID, FirstName, LastName FROM authors");

// process query results

ResultSetMetaData metaData = resultSet.getMetaData();
int numberOfColumns = metaData.getColumnCount();
System.out.printin("Authors Table of Books Database:\n");

for (inti=1;i<=numberOfColumns; i++)
System.out.printf("%-8s\t", metaData.getColumnName(i));

System.out.printin();

while (resultSet.next())

Downloaded from CSIT Tutor

intid = rs.getInt("AuthorID");
String firstName = rs.getString("FirstName");
String lastName = rs.getString("LastName");
System.out.printin(id+ "\t" + firstName+
"\t" + lastName);
}// end while
} // end try
catch (SQLException sqlException)
{
sqlException.printStackTrace();
}// end catch
Cursors
As mentioned previously, you access the data in a ResultSet object through a cursor, which points to
one row in the ResultSet object. However, when a ResultSet object is first created, the cursor is
positioned before the first row.There are other methods available to move the cursor:

next: Moves the cursor forward one row. Returns true if the cursor is now positioned on a row and false
if the cursor is positioned after the last row.

previous: Moves the cursor backward one row. Returns true if the cursor is now positioned on a row
and false if the cursor is positioned before the first row.

first: Moves the cursor to the first row in the ResultSet object. Returns true if the cursor is now
positioned on the first row and false if the ResultSet object does not contain any rows.

last: Moves the cursor to the last row in the ResultSet object. Returns true if the cursor is now
positioned on the last row and false if the ResultSet object does not contain any rows.

beforeFirst: Positions the cursor at the start of the ResultSet object, before the first row. If the ResultSet
object does not contain any rows, this method has no effect.

afterLast: Positions the cursor at the end of the ResultSet object, after the last row. If the ResultSet
object does not contain any rows, this method has no effect.

relative(int rows): Moves the cursor relative to its current position.

absolute(int row): Positions the cursor on the row specified by the parameter row.

Note that the default sensitivity of a ResultSet is TYPE_FORWARD_ONLY, which means that it cannot be
scrolled; you cannot call any of these methods that move the cursor, except next, if your ResultSet
cannot be scrolled.

Updating Rows in ResultSet Objects

You cannot update a default ResultSet object, and you can only move its cursor forward. However, you
can create ResultSet objects that can be scrolled (the cursor can move backwards or move to an
absolute position) and updated.

try {
// establish connection to database
connection = DriverManager.getConnection(
DATABASE_URL, "root", ");
statement = connection.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
ResultSet uprs= statement.executeQuery(

Downloaded from CSIT Tutor

"SELECT * FROM authors");

while (uprs.next()) {
uprs.updateString("LastName","Sharma");
uprs.updateRow();
}
}
catch (SQLException sqlException)
{
sqlException.printStackTrace();
}// end catch
The field ResultSet.TYPE_SCROLL_SENSITIVE creates a ResultSet object whose cursor can move both
forward and backward relative to the current position and to an absolute position. The field
ResultSet.CONCUR_UPDATABLE creates a ResultSet object that can be updated. See the ResultSet
Javadoc for other fields you can specify to modify the behavior of ResultSet objects.

The method ResultSet.updateString updates the specified column (in this example, LastName with the
specified float value in the row where the cursor is positioned. ResultSet contains various updater
methods that enable you to update column values of various data types. However, none of these
updater methods modifies the database; you must call the method ResultSet.updateRow to update the
database.

Inserting Rows in ResultSet Objects

Note: Not all JDBC drivers support inserting new rows with the ResultSet interface. If you attempt to
insert a new row and your JDBC driver database does not support this feature, a
SQLFeatureNotSupportedException exception is thrown.

try {
statement = connection.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

ResultSet uprs = statement.executeQuery(
"SELECT * FROM authors");

uprs.moveTolnsertRow();
uprs.updatelnt("AuthorID",9);
uprs.updateString("FirstName","Subash");
uprs.updateString("LastName","Pakhrin");
uprs.insertRow();
uprs.beforeFirst();
}

catch (SQLException sqlException)

{
sqlException.printStackTrace();

}// end catch

This example calls the Connection.createStatement method with two arguments,
ResultSet.TYPE_SCROLL_SENSITIVE and ResultSet.CONCUR_UPDATABLE. The first value enables the

Downloaded from CSIT Tutor

cursor of the ResultSet object to be moved both forward and backward. The second value,
ResultSet. CONCUR_UPDATABLE, is required if you want to insert rows into a ResultSet object; it
specifies that it can be updatable.

The same stipulations for using strings in getter methods also apply to updater methods.

The method ResultSet.moveTolnsertRow moves the cursor to the insert row. The insert row is a special
row associated with an updatable result set. It is essentially a buffer where a new row can be
constructed by calling the updater methods prior to inserting the row into the result set. For example,
this method calls the method ResultSet.updateString to update the insert row's COF_NAME column to
Kona.

The method ResultSet.insertRow inserts the contents of the insert row into the ResultSet object and into
the database.

Note: After inserting a row with the ResultSet.insertRow, you should move the cursor to a row other
than the insert row. For example, this example moves it to before the first row in the result set with the
method ResultSet.beforeFirst. Unexpected results can occur if another part of your application uses the
same result set and the cursor is still pointing to the insert row.

Using Statement Objects for Batch Updates

Statement, PreparedStatement and CallableStatement objects have a list of commands that is
associated with them. This list may contain statements for updating, inserting, or deleting a row; and it
may also contain DDL statements such as CREATE TABLE and DROP TABLE. It cannot, however, contain a
statement that would produce a ResultSet object, such as a SELECT statement. In other words, the list
can contain only statements that produce an update count.

The list, which is associated with a Statement object at its creation, is initially empty. You can add SQL
commands to this list with the method addBatch and empty it with the method clearBatch. When you
have finished adding statements to the list, call the method executeBatch to send them all to the
database to be executed as a unit, or batch.

try {
connection = DriverManager.getConnection(
DATABASE_URL, "root", ");
connection.setAutoCommit(false);
statement = connection.createStatement();

statement.addBatch(
"INSERT INTO authors " +
"VALUES('15','Hari','Shrestha')");

statement.addBatch(
"INSERT INTO authors " +
"VALUES('16','Ram’,'Acharya’)");

statement.addBatch(
"INSERT INTO authors " +

Downloaded from CSIT Tutor

"VALUES('17','Shyam’','Gautam’')");

statement.addBatch(
"INSERT INTO authors " +
"VALUES('18','Govinda’,'Paudel’)");

int [] updateCounts = statement.executeBatch();
connection.commit();

} catch(BatchUpdateException b) {
b.printStackTrace();

} catch(SQLException ex) {
ex.printStackTrace();

}

The following line disables auto-commit mode for the Connection object con so that the transaction will
not be automatically committed or rolled back when the method executeBatch is called.
connection.setAutoCommit(false);

To allow for correct error handling, you should always disable auto-commit mode before beginning a
batch update.

The method Statement.addBatch adds a command to the list of commands associated with the
Statement object statement. In this example, these commands are all INSERT INTO statements, each
one adding a row consisting of three column values.

The following line sends the four SQL commands that were added to its list of commands to the
database to be executed as a batch:

int [] updateCounts = statement.executeBatch();

Note that statement uses the method executeBatch to send the batch of insertions, not the method
executeUpdate, which sends only one command and returns a single update count. The DBMS
executes the commands in the order in which they were added to the list of commands, so it will first
add the row of values for "Hari" , then add the row for "Ram", then "Shyam", and finally "Govinda". If all
four commands execute successfully, the DBMS will return an update count for each command in the
order in which it was executed. The update counts that indicate how many rows were affected by each
command are stored in the array updateCounts.

If all four of the commands in the batch are executed successfully, updateCounts will contain four
values, all of which are 1 because an insertion affects one row. The list of commands associated with
stmt will now be empty because the four commands added previously were sent to the database when
stmt called the method executeBatch. You can at any time explicitly empty this list of commands with
the method clearBatch.

The Connection.commit method makes the batch of updates to the "authors" table permanent. This
method needs to be called explicitly because the auto-commit mode for this connection was disabled

previously.

The following line enables auto-commit mode for the current Connection object.

Downloaded from CSIT Tutor

connection.setAutoCommit(true);

Now each statement in the example will automatically be committed after it is executed, and it no
longer needs to invoke the method commit.

PreparedStatements

A PreparedStatement enables you to create compiled SQL statements that execute more efficiently
than Statements. PreparedStatements can also specify parameters, making them more flexible than
Statements—you can execute the same query repeatedly with different

parameter values.

The PreparedStatement is derived from the more general class, Statement. If you want to execute a
Statement object many times, it usually reduces execution time to use a PreparedStatement object
instead.

Performing Parameterized Batch Update using PreparedStatement

It is also possible to have a parameterized batch update, as shown in the following code fragment,
where con is a Connection object:

try {
connection = DriverManager.getConnection(
DATABASE_URL, "root","");
connection.setAutoCommit(false);
PreparedStatement pstmt = connection.prepareStatement(
"INSERT INTO authors VALUES(?, ?, ?)");
pstmt.setint(1,19);
pstmt.setString(2, "Navin");
pstmt.setString(3,"Sharma");
pstmt.addBatch();

pstmt.setint(1,20);
pstmt.setString(2, "Rajesh");
pstmt.setString(3,"Paudel");
pstmt.addBatch();

// ... and so on for each new
// type of coffee

int [] updateCounts = pstmt.executeBatch();
connection.commit();
}
catch (SQLException sqlException)
{
sqlException.printStackTrace();
}// end catch

The three question marks (?) in the the preceding SQL statement’s last line are placeholders for values

that will be passed as part of the query to the database. Before executing a PreparedStatement, the
program must specify the parameter values by using the Prepared- Statement interface’s set methods.

Downloaded from CSIT Tutor

For the preceding query, parameters are int and strings that can be set with Prepared- Statement
method setint and setString.

Method setint's and setString’s first argument represents the parameter number being set, and the
second argument is that parameter’s value. Parameter numbers are counted from 1, starting with the
first question mark (?).

Interface PreparedStatement provides set methods for each supported SQL type. It's important to use
the set method that is appropriate for the parameter’s SQL type in the database—SQLExceptions
occur when a program attempts to convert a parameter value to an incorrect type.

Transaction Processing
Many database applications require guarantees that a series of database insertions, updates and

deletions executes properly before the application continues processing the next database operation.
For example, when you transfer money electronically between bank accounts, several factors determine
if the transaction is successful. You begin by specifying the source account and the amount you wish to
transfer from that account to a destination account. Next, you specify the destination account. The bank
checks the source account to determine whether its funds are sufficient to complete the transfer. If so,
the bank withdraws the specified amount and, if all goes well, deposits it into the destination account to
complete the transfer. What happens if the transfer fails after the bank withdraws the money from the
source account? In a proper banking system, the bank redeposits the money in the source account.The
way to be sure that either both actions occur or neither action occurs is to use a transaction. A
transaction is a set of one or more statements that is executed as a unit, so either all of the
statements are executed, or none of the statements is executed.

The way to allow two or more statements to be grouped into a transaction is to disable the auto-
commit mode.

Disabling Auto-Commit Mode

When a connection is created, it is in auto-commit mode. This means that each individual SQL statement
is treated as a transaction and is automatically committed right after it is executed.

The way to allow two or more statements to be grouped into a transaction is to disable the auto-
commit mode.

con.setAutoCommit(false);

Committing Transactions

After the auto-commit mode is disabled, no SQL statements are committed until you call the method
commit explicitly. All statements executed after the previous call to the method commit are included in
the current transaction and committed together as a unit.

con.commit();

Rollback

If you group update statements to a transaction, then the transaction either succeeds in its entirety and
it can be committed, or it fails somewhere in the middle. In that case, you can carry out a rollback and
the database automatically undoes the effect of all updates that occurred since the last committed
transaction.

You turn off autocommit mode with the command
conn.setAutoCommit(false);

Now you create a statement object in the normal way:
Statement stat = conn.createStatement();

Call executeUpdate any number of times:
stat.executeUpdate(commandl);

Downloaded from CSIT Tutor

stat.executeUpdate(command?2);
stat.executeUpdate(command3);

When all commands have been executed, call the commit method:

conn.commit();

However, if an error occurred, call

conn.rollback();

Then, all commands until the last commit are automatically reversed. You typically issue a rollback when
your transaction was interrupted by a SQLException.

Save Points

You can gain finer-grained control over the rollback process by using save points. Creating a save point
marks a point to which you can later return without having to return to the start of the transaction. For
example,

Statement stat = conn.createStatement(); // start transaction; rollback() goes here
stat.executeUpdate(command1);

Savepoint svpt = conn.setSavepoint(); // set savepoint; rollback(svpt) goes here
stat.executeUpdate(command2);
if (. . .) conn.rollback(svpt); // undo effect of command2

conn.commit();

Here, we used an anonymous save point. You can also give the save point a name, such as
Savepoint svpt = conn.setSavepoint('stagel");

When you are done with a save point, you should release it:

stat.releaseSavepoint(svpt);

import java.sql.Connection;

import java.sql.Statement;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;
import java.sql.SQLException;

import java.sql.BatchUpdateException;
import java.sql.PreparedStatement;

public class DisplayAuthors
{
// database URL
static final String DATABASE_URL = "jdbc:mysql://localhost/books";

// launch the application
public static void main(String args[])

{

Connection connection = null; // manages connection
Statement statement = null; // query statement

Downloaded from CSIT Tutor

ResultSet resultSet = null; // manages results

try {
// establish connection to database
connection = DriverManager.getConnection(

DATABASE_URL, "root", "");

statement = connection.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_UPDATABLE);

ResultSet uprs= statement.executeQuery(

"SELECT * FROM authors");

while (uprs.next()) {
uprs.updateString("LastName","Sharma");
uprs.updateRow();
}
}
catch (SQLException sqlException)
{
sqlException.printStackTrace();
}// end catch

try {
statement = connection.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_UPDATABLE);

ResultSet uprs = statement.executeQuery(
"SELECT * FROM authors");

uprs.moveTolnsertRow();
uprs.updatelnt("AuthorID",9);
uprs.updateString("FirstName","Subash");
uprs.updateString("LastName","Pakhrin");
uprs.insertRow();
uprs.beforeFirst();
}

catch (SQLException sqlException)

{
sqlException.printStackTrace();

}// end catch

try {

connection.setAutoCommit(false);

statement = connection.createStatement();

statement.addBatch(
"INSERT INTO authors " +
"VALUES('15','Hari','Shrestha')");

statement.addBatch(

Downloaded from CSIT Tutor

"INSERT INTO authors " +
"VALUES('16','Ram’,'Acharya')");

statement.addBatch(
"INSERT INTO authors " +
"VALUES('17','Shyam’','Gautam’')");

statement.addBatch(
"INSERT INTO authors " +
"VALUES('18','Govinda’,'Paudel’)");

int [] updateCounts = statement.executeBatch();
connection.commit();

} catch(BatchUpdateException b) {
b.printStackTrace();

} catch(SQLException ex) {
ex.printStackTrace();

}

try {
connection.setAutoCommit(false);

PreparedStatement pstmt = connection.prepareStatement(
"INSERT INTO authors VALUES(?, ?, ?)");

pstmt.setint(1,19);

pstmt.setString(2, "Navin");

pstmt.setString(3,"Sharma");

pstmt.addBatch();

pstmt.setint(1,20);
pstmt.setString(2, "Rajesh");
pstmt.setString(3,"Paudel");
pstmt.addBatch();

// ... and so on for each new
// type of authors

int [] updateCounts = pstmt.executeBatch();
connection.commit();

}
catch (SQLException sqlException)

{
sqlException.printStackTrace();

}// end catch
// connect to database books and query database

try
{

Downloaded from CSIT Tutor

// create Statement for querying database
statement = connection.createStatement();

// query database
resultSet = statement.executeQuery(
"SELECT AuthorlD, FirstName, LastName FROM authors");

// process query results

ResultSetMetaData metaData = resultSet.getMetaData();
int numberOfColumns = metaData.getColumnCount();
System.out.printIn("Authors Table of Books Database:\n");

for (inti=1;i<=numberOfColumns; i++)
System.out.printf("%-8s\t", metaData.getColumnName(i));
System.out.printin();

while (resultSet.next())
{
for (inti=1;i<=numberOfColumns; i++)
System.out.printf("%-8s\t", resultSet.getObject(i));
System.out.printin();
}// end while
} // end try
catch (SQLException sqlException)
{
sqlException.printStackTrace();
}// end catch

finally // ensure resultSet, statement and connection are closed
{
try
{
resultSet.close();
statement.close();
connection.setAutoCommit(true);
connection.close();

}// end try
catch (Exception exception)
{
exception.printStackTrace();

}// end catch

}// end finally

}// end main
}// end class DisplayAuthors

RowsSet Interface

Downloaded from CSIT Tutor

A JDBC RowSet object holds tabular data in a way that makes it more flexible and easier to use than a
result set.The RowSet interface configures the database connection and prepares query statements
automatically.It provides several set methods that allow you to specify the properties needed to
establish a connection (such as the database URL, user name and password of the database) and create
a Statement (such as a query). RowSet also provides several get methods that return these properties.
Connected and Disconnected RowSets

There are two types of RowSet objects—connected and disconnected. A connected RowSet object
connects to the database once and remains connected while the object is in use. A disconnected
RowsSet object connects to the database, executes a query to retrieve the data from the database and
then closes the connection. A program may change the data in a disconnected RowSet while it’s
disconnected. Modified data can be updated in the database

after a disconnected RowSet reestablishes the connection with the database.

Package javax.sgl.rowset contains two subinterfaces of RowSet—JdbcRowSet and CachedRowSet.
JdbcRowsSet, a connected RowSet, acts as a wrapper around a ResultSet object and allows you to scroll
through and update the rows in the ResultSet. By default, a ResultSet object is nonscrollable and read
only—you must explicitly set the result set type constant to TYPE_SCROLL_INSENSITIVE and set the
result set concurrency constant to CONCUR_UPDATABLE to make a ResultSet object scrollable and
updatable.

A JdbcRowsSet object is scrollable and updatable by default. CachedRowSet, a disconnected

RowSet, caches the data of a ResultSet in memory and disconnects from the database.Like JdbcRowSet,
a CachedRowSet object is scrollable and updatable by default. A Cached-RowSet object is also
serializable, so it can be passed between Java applications through a network, such as the Internet.
However, CachedRowSet has a limitation—the amount of data that can be stored in memory is limited.
Package javax.sgl.rowset contains three other subinterfaces of RowSet:WebRowSet,JoinRowSet and
FilteredRowSet.

(For Reference:http://docs.oracle.com/javase/tutorial/jdbc/basics/rowset.html).

JdbcRowSet

Navigating JdbcRowSet Objects

JdbcRowsSet jdbcRs = new JdbcRowSetImpl();
jdbcRs.absolute(4);

jdbcRs.previous();

Updating Column Values
jdbcRs.absolute(3);
jdbcRs.updateString("lastName", "Sharma");
jdbcRs.updateRow();

Inserting Rows
jdbcRs.moveTolnsertRow();

jdbcRs.updatelnt("Author_ID", 10);
jdbcRs.updateString("FirstName", "Navin");
jdbcRs.updateString("LastName", "Sharma");
jdbcRs.insertRow();

Deleting Rows
jdbcRs.last();

Downloaded from CSIT Tutor

jdbcRs.deleteRow();

// Program demonstrating JdbcRowSet

//JdbcRowSetTest.java

//Displaying the contents of the Authors table using JdbcRowSet.
import java.sql.ResultSetMetaData;

import java.sql.SQLException;

import javax.sql.rowset.JdbcRowSet;

import com.sun.rowset.JdbcRowSetImpl; // Sun's JdbcRowSet implementation
public class JdbcRowSetTest

{

// JDBC driver name and database URL

static final String DATABASE_URL = "jdbc:mysql://localhost/books";
static final String USERNAME = "root";

static final String PASSWORD ="";

// constructor connects to database, queries database, processes
// results and displays results in window

public JdbcRowSetTest()

{

// connect to database books and query database

try

{

// specify properties of JdbcRowSet

JdbcRowSet rowSet = new JdbcRowSetIimpl();

rowSet.setUrl(DATABASE_URL); // set database URL
rowSet.setUsername(USERNAME); // set username
rowSet.setPassword(PASSWORD); // set password
rowSet.setCommand("SELECT * FROM Authors"); // set query
rowSet.execute(); // execute query

// process query results

ResultSetMetaData metaData = rowSet.getMetaData();

int numberOfColumns = metaData.getColumnCount();
System.out.printin("Authors Table of Books Database:\n");

// display rowset header

for (inti=1;i<=numberOfColumns; i++)
System.out.printf("%-8s\t", metaData.getColumnName(i));
System.out.printin();

// display each row

while(rowSet.next())

{

for (inti=1;i<=numberOfColumns; i++)
System.out.printf("%-8s\t",rowSet.getObject(i));

}// end while

// close the underlying ResultSet, Statement and Connection

Downloaded from CSIT Tutor

rowSet.close();

}// end try

catch (SQLException sqglException)

{

sqlException.printStackTrace();
System.exit(1);

}// end catch

}// end DisplayAuthors constructor
// launch the application

public static void main(String args[])
{

JdbcRowSetTest application = new JdbcRowSetTest();
}// end main

}// end class JdbcRowSetTest

CachedRowSet
Creating CachedRowSet Objects:
achedRowsSet crs = new CachedRowSetimpl();

Setting CachedRowSet Properties:
crs.setUsername(username);
crs.setPassword(password);
crs.setUrl("jdbc:mySubprotocol:mySubname");

Setting up command:
crs.setCommand("select * from Authors");

Populating CachedRowSet Objects:
crs.execute();

Updating CachedRowSet Object:
crs.updatelnt("Author_ID", 10);
crs.updateString("FirstName", "Navin");
crs.updateRow();

// Synchronizing the row back to the DB

crs.acceptChanges(con);

Inserting and Deleting Rows:
crs.absolute(3);
crs.updateString("lastName", "Sharma");
crs.updateRow();
crs.insertRow();
crs.moveToCurrentRow();
crs.acceptChanges(con);

Downloaded from CSIT Tutor

Unit-5 Network Programming

Networking Basics

Computers running on the Internet communicate to each other using either the Transmission Control
Protocol (TCP) or the User Datagram Protocol (UDP), as this diagram illustrates:

Application
(HTTP, fip, telnet, .

Transport
(TCP, UDP, .

letwerk
(F, .

Link
(device driver, ...
[l ooooo oo snnn oo sssm e nnssaa e sas s s s s s L
When you write Java programs that communicate over the network, you are programming at the

application layer. Typically, you don't need to concern yourself with the TCP and UDP layers. Instead,
you can use the classes in the java.net package. These classes provide system-independent network
communication. However, to decide which Java classes your programs should use, you do need to
understand how TCP and UDP differ.
Transmission Control Protocol (TCP)
TCP (Transmission Control Protocol) is a connection-based protocol that provides a reliable flow of data

between two computers.

When two applications want to communicate to each other reliably, they establish a connection and
send data back and forth over that connection. This is analogous to making a telephone call. If you want
to speak to your friend, a connection is established when you dial his phone number and he answers.
You send data back and forth over the connection by speaking to one another over the phone lines. Like
the phone company, TCP guarantees that data sent from one end of the connection actually gets to
the other end and in the same order it was sent. Otherwise, an error is reported.

TCP provides a point-to-point channel for applications that require reliable communications. The
Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and Telnet are all examples of
applications that require a reliable communication channel. The order in which the data is sent and
received over the network is critical to the success of these applications. When HTTP is used to read
from a URL, the data must be received in the order in which it was sent. Otherwise, user end up with a
jumbled HTML file, a corrupt zip file, or some other invalid information.

User Datagram Protocol (UDP)

UDP (User Datagram Protocol) is a protocol that sends independent packets of data, called datagrams,
from one computer to another with no guarantees about arrival.

The UDP protocol provides for communication that is not guaranteed between two applications on the
network. UDP is not connection-based like TCP. Rather, it sends independent packets of data, called
datagrams, from one application to another. Sending datagrams is much like sending a letter through

the postal service: The order of delivery is not important and is not guaranteed, and each message is

Prepared by: Navin Sharma 1 Unit-5: Network Programming

Downloaded from CSIT Tutor

independent of any other.

For many applications, the guarantee of reliability is critical to the success of the transfer of information
from one end of the connection to the other. However, other forms of communication don't require
such strict standards. In fact, they may be slowed down by the extra overhead or the reliable
connection may invalidate the service altogether.

Consider, for example, a clock server that sends the current time to its client when requested to do so. If
the client misses a packet, it doesn't really make sense to resend it because the time will be incorrect
when the client receives it on the second try. If the client makes two requests and receives packets from
the server out of order, it doesn't really matter because the client can figure out that the packets are out
of order and make another request. The reliability of TCP is unnecessary in this instance because it
causes performance degradation and may hinder the usefulness of the service.

Another example of a service that doesn't need the guarantee of a reliable channel is the ping
command. The purpose of the ping command is to test the communication between two programs over
the network. In fact, ping needs to know about dropped or out-of-order packets to determine how good
or bad the connection is. A reliable channel would invalidate this service altogether.

Many firewalls and routers have been configured not to allow UDP packets. If you're having trouble
connecting to a service outside your firewall, or if clients are having trouble connecting to your service,
you should check whether UDP is permitted.

Ports

The TCP and UDP protocols use ports to map incoming data to a particular process running on a
computer.Generally speaking, a computer has a single physical connection to the network. All data
destined for a particular computer arrives through that connection. However, the data may be intended
for different applications running on the computer. So how does the computer know to which
application to forward the data? Through the use of ports.

Data transmitted over the Internet is accompanied by addressing information that identifies the
computer and the port for which it is destined. The computer is identified by its 32-bit IP address, which
IP uses to deliver data to the right computer on the network. Ports are identified by a 16-bit number,
which TCP and UDP use to deliver the data to the right application.

In connection-based communication such as TCP, a server application binds a socket to a specific port
number. This has the effect of registering the server with the system to receive all data destined for that
port. A client can then rendezvous with the server at the server's port.
In datagram-based communication such as UDP, the datagram packet contains the port number of its
destination and UDP routes the packet to the appropriate application.

Prepared by: Navin Sharma 2 Unit-5: Network Programming

Downloaded from CSIT Tutor

app app app app
f |T lT f

paott port port port

TCP or UDP

Packet

Dt port # | Data

Port numbers range from 0 to 65,535 because ports are represented by 16-bit numbers. The port
numbers ranging from 0 - 1023 are restricted; they are reserved for use by well-known services such as
HTTP and FTP and other system services. These ports are called well-known ports. Your applications
should not attempt to bind to them.

Networking Classes in the JDK

Through the classes in java.net, Java programs can use TCP or UDP to communicate over the Internet.
The URL, URLConnection, Socket, and ServerSocket classes all use TCP to communicate over the
network. The DatagramPacket, DatagramSocket, and MulticastSocket classes are for use with UDP.

Working with URLs
URL is the acronym for Uniform Resource Locator. It is a reference (an address) to a resource on the

Internet. You provide URLs to your favorite Web browser so that it can locate files on the Internet in the
same way that you provide addresses on letters so that the post office can locate your correspondents.

Java programs that interact with the Internet also may use URLs to find the resources on the Internet
they wish to access. Java programs can use a class called URL in the java.net package to represent a
URL address.

The term URL can be ambiguous. It can refer to an Internet address or a URL object in a Java program.
Here "URL address" is used to mean an Internet address and "URL object" to refer to an instance of the
URL class in a program.

URL

URL is an acronym for Uniform Resource Locator and is a reference (an address) to a resource on the
Internet.If you've been surfing the Web, you have undoubtedly heard the term URL and have used URLs
to access HTML pages from the Web.

It's often easiest, although not entirely accurate, to think of a URL as the name of a file on the World
Wide Web because most URLs refer to a file on some machine on the network. However, remember
that URLs also can point to other resources on the network, such as database queries and command
output.
A URL has two main components:

Protocol identifier: For the URL http://example.com, the protocol identifier is http.

Prepared by: Navin Sharma 3 Unit-5: Network Programming

Downloaded from CSIT Tutor

http://example.com/

Resource name: For the URL http://example.com, the resource name is example.com.

Note that the protocol identifier and the resource name are separated by a colon and two forward
slashes. The protocol identifier indicates the name of the protocol to be used to fetch the resource. The
example uses the Hypertext Transfer Protocol (HTTP), which is typically used to serve up hypertext
documents. HTTP is just one of many different protocols used to access different types of resources on
the net. Other protocols include File Transfer Protocol (FTP), Gopher, File, and News.

The resource name is the complete address to the resource. The format of the resource name depends
entirely on the protocol used, but for many protocols, including HTTP, the resource name contains one
or more of the following components:
Host Name

The name of the machine on which the resource lives.
Filename

The pathname to the file on the machine.
Port Number

The port number to which to connect (typically optional).
Reference

A reference to a named anchor within a resource that usually identifies a specific location within a file
(typically optional).

For many protocols, the host name and the filename are required, while the port number and reference
are optional. For example, the resource name for an HTTP URL must specify a server on the network
(Host Name) and the path to the document on that machine (Filename); it also can specify a port
number and a reference.

Creating a URL
The easiest way to create a URL object is from a String that represents the human-readable form of the

URL address. This is typically the form that another person will use for a URL. In your Java program, you
can use a String containing this text to create a URL object:

URL myURL = new URL("http://example.com/");

The URL object created above represents an absolute URL. An absolute URL contains all of the
information necessary to reach the resource in question. You can also create URL objects from a relative
URL address.

Creating a URL Relative to Another

In your Java programs, you can create a URL object from a relative URL specification. For example,
suppose you know two URLs at the site example.com:

http://example.com/pages/pagel.html

http://example.com/pages/page2.html

You can create URL objects for these pages relative to their common base URL:
http://example.com/pages/ like this:

URL myURL = new URL("http://example.com/pages/");

URL pagelURL = new URL(myURL, "pagel.html");

URL page2URL = new URL(myURL, "page2.html");

Prepared by: Navin Sharma 4 Unit-5: Network Programming

Downloaded from CSIT Tutor

http://example.com/
http://example.com/pages/page1.html
http://example.com/pages/page2.html
http://example.com/pages/

This code snippet uses the URL constructor that lets you create a URL object from another URL object
(the base) and a relative URL specification. The general form of this constructor is:

URL(URL baseURL, String relativeURL)

The first argument is a URL object that specifies the base of the new URL. The second argument is a
String that specifies the rest of the resource name relative to the base. If baseURL is null, then this
constructor treats relativeURL like an absolute URL specification. Conversely, if relativeURL is an
absolute URL specification, then the constructor ignores baseURL.

Other URL Constructors

new URL("http", "example.com", "/pages/pagel.html");
This is equivalent to

new URL("http://example.com/pages/pagel.html");

The first argument is the protocol, the second is the host name, and the last is the pathname of the file.
Note that the filename contains a forward slash at the beginning. This indicates that the filename is
specified from the root of the host.

The final URL constructor adds the port number to the list of arguments used in the previous
constructor:

URL url = new URL("http", "example.com", 80, "pages/pagel.html");

This creates a URL object for the following URL:

http://example.com:80/pages/pagel.html

If you construct a URL object using one of these constructors, you can get a String containing the
complete URL address by using the URL object's toString method or the equivalent toExternalForm
method.

URL addresses with Special characters
Some URL addresses contain special characters, for example the space character. Like this:

http://example.com/hello world/

To make these characters legal they need to be encoded before passing them to the URL constructor.
URL url = new URL("http://example.com/hello%20world");

Encoding the special character(s) in this example is easy as there is only one character that needs
encoding, but for URL addresses that have several of these characters or if you are unsure when writing
your code what URL addresses you will need to access, you can use the multi-argument constructors of
the java.net.URI class to automatically take care of the encoding for you.

URI uri = new URI("http", "example.com", "/hello world/", "");

And then convert the URI to a URL.

URL url = uri.toURL();

MalformedURLException

Each of the four URL constructors throws a MalformedURLException if the arguments to the constructor
refer to a null or unknown protocol. Typically, you want to catch and handle this exception by
embedding your URL constructor statements in a try/catch pair, like this:

try {
URL myURL = new URL(...);
}
Prepared by: Navin Sharma 5 Unit-5: Network Programming

Downloaded from CSIT Tutor

http://example.com/pages/page1.html
http://example.com/hello

catch (MalformedURLException e) {
// exception handler code here
// ...

}

Parsing a URL
The URL class provides several methods that let you query URL objects. You can get the protocol,

authority, host name, port number, path, query, filename, and reference from a URL using these
accessor methods:

getProtocol
Returns the protocol identifier component of the URL.
getAuthority
Returns the authority component of the URL.
getHost
Returns the host name component of the URL.
getPort
Returns the port number component of the URL. The getPort method returns an integer that is the
port number. If the port is not set, getPort returns -1.
getPath
Returns the path component of this URL.
getQuery
Returns the query component of this URL.
getFile
Returns the filename component of the URL. The getFile method returns the same as getPath, plus
the concatenation of the value of getQuery, if any.
getRef
Returns the reference component of the URL.

Note:

Remember that not all URL addresses contain these components. The URL class provides these methods
because HTTP URLs do contain these components and are perhaps the most commonly used URLs. The
URL class is somewhat HTTP-centric.

You can use these getXXX methods to get information about the URL regardless of the constructor that
you used to create the URL object.

The URL class, along with these accessor methods, frees you from ever having to parse URLs again!
Given any string specification of a URL, just create a new URL object and call any of the accessor
methods for the information you need. This small example program creates a URL from a string

specification and then uses the URL object's accessor methods to parse the URL:

import java.net.*;
import java.io.*;

public class ParseURL {

public static void main(String[] args) throws Exception {

Prepared by: Navin Sharma 6 Unit-5: Network Programming

Downloaded from CSIT Tutor

URL aURL = new URL("http://example.com:80/docs/books/tutorial"
+ "/index.html?name=networkingtDOWNLOADING");

System.out.printin("protocol =" + aURL.getProtocol());
System.out.printin("authority =" + aURL.getAuthority());
System.out.printin("host =" + aURL.getHost());
System.out.printin("port =" + aURL.getPort());
System.out.printin("path =" + aURL.getPath());
System.out.printin("query =" + aURL.getQuery());
System.out.printin("filename =" + aURL.getFile());
System.out.printin("ref =" + aURL.getRef());
}
}

Here is the output displayed by the program:

protocol = http

authority = example.com:80

host = example.com

port = 80

path = /docs/books/tutorial/index.html

query = name=networking

filename = /docs/books/tutorial/index.html?name=networking
ref = DOWNLOADING

Reading Directly from a URL
After you've successfully created a URL, you can call the URL's openStream() method to get a stream

from which you can read the contents of the URL. The openStream() method returns a
java.io.lnputStream object, so reading from a URL is as easy as reading from an input stream.

The following small Java program uses openStream() to get an input stream on the URL
http://www.google.com.np/. It then opens a BufferedReader on the input stream and reads from the
BufferedReader thereby reading from the URL. Everything read is copied to the standard output stream:

import java.net.*;
import java.io.*;

public class URLReader {
public static void main(String[] args) throws Exception {

URL oracle = new URL("http://www.google.com.np/");
BufferedReader in = new BufferedReader(
new InputStreamReader(oracle.openStream()));

String inputlLine;
while ((inputLine = in.readLine()) != null)
System.out.printin(inputLine);

in.close();

Prepared by: Navin Sharma 7 Unit-5: Network Programming

Downloaded from CSIT Tutor

http://www.google.com.np/

When you run the program, you should see, scrolling by in your command window, the HTML
commands and textual content from the HTML file located at http://www.google.com.np/.

Connecting to a URL
After you've successfully created a URL object, you can call the URL object's openConnection method to
get a URLConnection object, or one of its protocol specific subclasses, e.g. java.net.HttpURLConnection

You can use this URLConnection object to setup parameters and general request properties that you
may need before connecting. Connection to the remote object represented by the URL is only initiated
when the URLConnection.connect method is called. When you do this you are initializing a
communication link between your Java program and the URL over the network. For example, the
following code opens a connection to the site example.com:

try {
URL myURL = new URL("http://example.com/");
URLConnection myURLConnection = myURL.openConnection();
myURLConnection.connect();

}

catch (MalformedURLException e) {
// new URL() failed
/...

}
catch (IOException e) {

// openConnection() failed
// ...
}

A new URLConnection object is created every time by calling the openConnection method of the
protocol handler for this URL.

You are not always required to explicitly call the connect method to initiate the connection. Operations
that depend on being connected, like getinputStream, getOutputStream, etc, will implicitly perform the
connection, if necessary.

Now that you've successfully connected to your URL, you can use the URLConnection object to perform
actions such as reading from or writing to the connection. The next example shows how.

Reading from a URLConnection

The following program performs the same function as the URLReader program shown in Reading
Directly from a URL.

However, rather than getting an input stream directly from the URL, this program explicitly retrieves a
URLConnection object and gets an input stream from the connection. The connection is opened
implicitly by calling getlnputStream. Then, like URLReader, this program creates a BufferedReader on the
input stream and reads from it.

import java.net.*;

Prepared by: Navin Sharma 8 Unit-5: Network Programming

Downloaded from CSIT Tutor

http://www.google.com.np/

import java.io.*;

public class URLConnectionReader {
public static void main(String[] args) throws Exception {
URL oracle = new URL("http://www.oracle.com/");
URLConnection yc = oracle.openConnection();
BufferedReader in = new BufferedReader(new InputStreamReader(
yc.getlnputStream()));
String inputlLine;
while ((inputLine = in.readLine()) != null)
System.out.printin(inputLine);
in.close();

The output from this program is identical to the output from the program that opens a stream directly
from the URL. You can use either way to read from a URL. However, reading from a URLConnection
instead of reading directly from a URL might be more useful. This is because you can use the
URLConnection object for other tasks (like writing to the URL) at the same time.

Sockets

URLs and URLConnections provide a relatively high-level mechanism for accessing resources on the
Internet. Sometimes your programs require lower-level network communication, for example, when you
want to write a client-server application.

In client-server applications, the server provides some service, such as processing database queries or
sending out current stock prices. The client uses the service provided by the server, either displaying
database query results to the user or making stock purchase recommendations to an investor. The
communication that occurs between the client and the server must be reliable. That is, no data can be
dropped and it must arrive on the client side in the same order in which the server sent it.

TCP provides a reliable, point-to-point communication channel that client-server applications on the
Internet use to communicate with each other. To communicate over TCP, a client program and a server
program establish a connection to one another. Each program binds a socket to its end of the
connection. To communicate, the client and the server each reads from and writes to the socket bound
to the connection.

What Is a Socket?
Normally, a server runs on a specific computer and has a socket that is bound to a specific port number.
The server just waits, listening to the socket for a client to make a connection request.

On the client-side: The client knows the hostname of the machine on which the server is running and
the port number on which the server is listening. To make a connection request, the client tries to
rendezvous with the server on the server's machine and port. The client also needs to identify itself to
the server so it binds to a local port number that it will use during this connection. This is usually
assigned by the system.

Prepared by: Navin Sharma 9 Unit-5: Network Programming

Downloaded from CSIT Tutor

connection
request

SEMer)
client

- OO

=00

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new
socket bound to the same local port and also has its remote endpoint set to the address and port of the
client. It needs a new socket so that it can continue to listen to the original socket for connection
requests while tending to the needs of the connected client.

connection

Semer

— = O
tit—

client

= O

On the client side, if the connection is accepted, a socket is successfully created and the client can use
the socket to communicate with the server.

The client and server can now communicate by writing to or reading from their sockets.

Definition:

A socket is one endpoint of a two-way communication link between two programs running on the
network. A socket is bound to a port number so that the TCP layer can identify the application that data
is destined to be sent.

An endpoint is a combination of an IP address and a port number. Every TCP connection can be uniquely
identified by its two endpoints. That way you can have multiple connections between your host and the

server.

The java.net package in the Java platform provides a class, Socket, that implements one side of a two-
way connection between your Java program and another program on the network. The Socket class sits
on top of a platform-dependent implementation, hiding the details of any particular system from your
Java program. By using the java.net.Socket class instead of relying on native code, your Java programs
can communicate over the network in a platform-independent fashion.

Additionally, java.net includes the ServerSocket class, which implements a socket that servers can use
to listen for and accept connections to clients.

If you are trying to connect to the Web, the URL class and related classes (URLConnection, URLEncoder)
are probably more appropriate than the socket classes. In fact, URLs are a relatively high-level

connection to the Web and use sockets as part of the underlying implementation.

Establishing a Simple Server Using Stream Sockets

Establishing a simple server in Java requires five steps.
Step 1: Create a ServerSocket

Prepared by: Navin Sharma 10 Unit-5: Network Programming

Downloaded from CSIT Tutor

First step is to create a ServerSocket object. A call to the ServerSocket constructor, such as
ServerSocket server = new ServerSocket(portNumber, queuelLength);
registers an available TCP port number and specifies themaximum number of clients that can wait to
connect to the server (i.e., the queue length). The port number is used by clients to locate the server
application on the server computer. This is often called the handshake point. If the queue is full, the
server refuses client connections. The constructor establishes the port where the server waits for
connections from clients—a process known as binding the server to the port. Each client will ask to
connect to the server on this port. Only one application at a time can be bound to a specific port on the
server.
Step 2: Wait for a Connection
Programs manage each client connection with a Socket object. In Step 2, the server listens indefinitely
(or blocks) for an attempt by a client to connect. To listen for a client connection, the program calls
ServerSocket method accept, as in
Socket connection = server.accept();
which returns a Socket when a connection with a client is established. The Socket allows the server to
interact with the client. The interactions with the client actually occur at a different server port from the
handshake point. This allows the port specified in Step 1 to be used again in a multithreaded server to
accept another client connection.
Step 3: Get the Socket’s I/O Streams
Step 3 is to get the OutputStream and InputStream objects that enable the server to communicate with
the client by sending and receiving bytes. The server sends information to the client via an
OutputStream and receives information from the client via an InputStream. The server invokes method
getOutputStream on the Socket to get a reference to the Socket’s OutputStream and invokes method
getinputStream on the Socket to get a reference to the Socket’s InputStream.
Socket con=new Socket("localHost",95);
BufferedReader in=new BufferedReader(new InputStreamReader(con.getinputStream()));
PrintWriter out=new PrintWriter(con.getOutputStream(),true);
The beauty of establishing these relationships is that whatever the server writes to the
PrintWriter is sent via the OutputStream and is available at the client’s InputStream, and whatever the
client writes to its OutputStream (with a corresponding PrintWriter) is available via the server’s
InputStream. The transmission of the data over the network is seamless and is handled completely by
Java.
Step 4: Perform the Processing
In which the server and the client communicate via the OutputStream and InputStream objects.
Step 5: Close the Connection
when the transmission is complete, the server closes the connection by invoking the close method on
the streams and on the Socket.
in.close();
out.close();
con.close();

Establishing a Simple Client Using Stream Sockets

Prepared by: Navin Sharma 11 Unit-5: Network Programming

Downloaded from CSIT Tutor

Establishing a simple client in Java requires four steps.
Step 1: Create a Socket to Connect to the Server
In first step we create a Socket to connect to the server. The Socket constructor establishes
the connection. For example, the statement

Socket connection = new Socket(serverAddress, port);
uses the Socket constructor with two arguments—the server’s address (serverAddress) and
the port number. If the connection attempt is successful, this statement returns a Socket. A connection
attempt that fails throws an instance of a subclass of I0Exception, so many programs simply catch
IOException. An UnknownHostException occurs specifically when the system is unable to resolve the
server name specified in the call to the Socket constructor to a corresponding IP address.
Step 2: Get the Socket’s I/0 Streams
Here the client uses Socket methods getinputStream and getOutputStream to obtain references to the
Socket’s InputStream and OutputStream as described earlier.
Step 3: Perform the Processing
In this phase the client and the server communicate via the InputStream and OutputStream objects.
Step 4: Close the Connection
In Step 4, the client closes the connection when the transmission is complete by invoking the close
method on the streams and on the Socket as described earlier.

InetAddress class
Usually, you don't have to worry too much about Internet addresses, the numerical host addresses that
consist of four bytes (or, with IPv6, 16 bytes) such as 132.163.4.102. However, you can use the
InetAddress class if you need to convert between host names and Internet addresses.
As of JDK 1.4, the java.net package supports IPv6 Internet addresses, provided the host operating
system does.
The static getByName method returns an InetAddress object of a host. For example,

InetAddress address = InetAddress.getByName("HostName");
returns an InetAddress object that encapsulates the sequence of four bytes such as 132.163.4.104.
Some host names with a lot of traffic correspond to multiple Internet addresses, to facilitate load
balancing. For example,the host name java.sun.com corresponds to three different Internet addresses.
One of them is picked at random when the host is accessed. You can get all hosts with the
getAlIByName method.

InetAddress[] addresses = InetAddress.getAlIByName(host);
String getHostAddress()-returns a string with decimal numbers, separated by periods, for example,
"132.163.4.102".
String getHostName()-returns the host name.

Program for chatting between client and server

//Server.java
import java.io.*;
import java.net.*;
public class Server

Prepared by: Navin Sharma 12 Unit-5: Network Programming

Downloaded from CSIT Tutor

{

public static void main(String a[])throws IOException
{

try

{

System.out.println("SERVER:......\n");
ServerSocket s=new ServerSocket(95);
System.out.printin("Server Waiting For The Client");
Socket cs=s.accept();

InetAddress ia=cs.getlnetAddress();

String cli=ia.getHostAddress();
System.out.printIn("Connected to the client with IP:"+cli);
BufferedReader in=new BufferedReader(new
InputStreamReader(cs.getInputStream()));
PrintWriter out=new PrintWriter(cs.getOutputStream(),true);
do

{

BufferedReader din=new BufferedReader(new
InputStreamReader(System.in));
System.out.print("To Client:");

String tocl=din.readLine();

out.printin(tocl);

String st=in.readLine();
if(st.equalslignoreCase("Bye") | | st==null)break;
System.out.printin("From Client:"+st);

twhile(true);

in.close();

out.close();

cs.close();

}

catch(IOException e) { }

}

}

//Client.java
import java.io.*;
import java.net.*;
public class Client

{
public static void main(String a[])throws IOException
{
try
Prepared by: Navin Sharma 13 Unit-5: Network Programming

Downloaded from CSIT Tutor

{
System.out.printin("CLIENT:.....\n");

Socket con=new Socket("localHost",95);
BufferedReader in=new BufferedReader(new
InputStreamReader(con.getInputStream()));
PrintWriter out=new PrintWriter(con.getOutputStream(),true);
while(true)

{

String sl1=in.readLine();
System.out.printIn("From Server:"+s1);
System.out.print("Enter the messages to the server:");
BufferedReader din=new BufferedReader(new
InputStreamReader(System.in));

String st=din.readLine();

out.printin(st);

if(st.equalslignoreCase("Bye") | | st==null)break;
}

in.close();

out.close();

con.close();

}

catch(UnknownHostException e){ }

}

}

Serving Multiple Clients
There is one problem with the simple server in the preceding example. Suppose we want to allow

multiple clients to connect to our server at the same time. Typically, a server runs constantly on a server
computer, and clients from all over the Internet may want to use the server at the same time. Rejecting
multiple connections allows any one client to monopolize the service by connecting to it for a long time.
We can do much better through the magic of threads.

Every time we know the program has established a new socket connection, that is, when the call to
accept was successful, we will launch a new thread to take care of the connection between the server
and that client. The main program will just go back and wait for the next connection. For this to happen,
the main loop of the server should look like this:

while (true)

{

Socket incoming = s.accept();
Runnable r = new ThreadedEchoHandler(incoming);

Prepared by: Navin Sharma 14 Unit-5: Network Programming

Downloaded from CSIT Tutor

Thread t = new Thread(r);
t.start();

}

The THReadedEchoHandler class implements Runnable and contains the communication loop with the
client in its run method.

class ThreadedEchoHandler implements Runnable
{...
public void run()
{
try
{
InputStream inStream = incoming.getInputStream();
OutputStream outStream = incoming.getOutputStream();
...process input and send response...
incoming.close();
}
catch(IOException e)
{
handle exception
}
}
}

Because each connection starts a new thread, multiple clients can connect to the server at the same
time.

Socket Timeouts

In real-life programs, you don't just want to read from a socket, because the read methods will block
until data are available. If the host is unreachable, then your application waits for a long time and you
are at the mercy of the underlying operating system to time out eventually. Instead, you should decide
what timeout value is reasonable for your particular application. Then, call the setSoTimeout method to
set a timeout value (in milliseconds).
Socket s = new Socket(. . .);
s.setSoTimeout(10000); // time out after 10 seconds
If the timeout value has been set for a socket, then all subsequent read and write operations throw a
SocketTimeoutException when the timeout has been reached before the operation has completed its
work. You can catch that exception and react to the timeout.
try
{

Scanner in = new Scanner(s.getinputStream());

String line = in.nextLine();

Prepared by: Navin Sharma 15 Unit-5: Network Programming

Downloaded from CSIT Tutor

}

catch (InterruptedlOException exception)

{

react to timeout

}

Interruptible Sockets

When you connect to a socket, the current thread blocks until the connection has been established or a
timeout has elapsed. Similarly, when you read or write data through a socket, the current thread blocks
until the operation is successful or has timed out.

In interactive applications, you would like to give users an option to simply cancel a socket connection
that does not appear to produce results. However, if a thread blocks on an unresponsive socket, you
cannot unblock it by calling interrupt.

To interrupt a socket operation, you use a SocketChannel, a feature of the java.nio package. Open the
SocketChannel like this:

SocketChannel channel = SocketChannel.open(new InetSocketAddress(host, port));

A channel does not have associated streams. Instead, it has read and write methods that make use of
Buffer objects.These methods are declared in interfaces ReadableByteChannel and
WritableByteChannel.

If you don't want to deal with buffers, you can use the Scanner class to read from a SocketChannel
because Scanner has a constructor with a ReadableByteChannel parameter:

Scanner in = new Scanner(channel);

To turn a channel into an output stream, use the static Channels.newOutputStream method.
OutputStream outStream = Channels.newOutputStream(channel);

That's all you need to do. Whenever a thread is interrupted during an open, read, or write operation,
the operation does not block but is terminated with an exception.

Half-Close

When a client program sends a request to the server, the server needs to be able to determine when
the end of the request occurs. For that reason, many Internet protocols (such as SMTP) are line
oriented. Other protocols contain a header that specifies the size of the request data. Otherwise,
indicating the end of the request data is harder than writing data to a file. With a file, you'd just close
the file at the end of the data. However, if you close a socket, then you immediately disconnect from the
server.

The half-close overcomes this problem. You can close the output stream of a socket, thereby indicating
to the server the end of the request data, but keep the input stream open so that you can read the

response.

The client side looks like this:

Prepared by: Navin Sharma 16 Unit-5: Network Programming

Downloaded from CSIT Tutor

Socket socket = new Socket(host, port);

Scanner in = new Scanner(socket.getinputStream());
PrintWriter writer = new PrintWriter(socket.getOutputStream());
// send request data

writer.print(. . .);

writer.flush();

socket.shutdownOutput();

// now socket is half closed

// read response data

while (in.hasNextLine()) != null) { String line = in.nextLine(); . ..}
socket.close();

The server side simply reads input until the end of the input stream is reached.This protocol is only
useful for one-shot services such as HTTP where the client connects, issues a request, catches the
response, and then disconnects.

Sending E-Mail via javax.mail API

//SendMail.java

import java.util.Properties;

import javax.mail.Message;

import javax.mail.MessagingException;
import javax.mail.PasswordAuthentication;
import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

public class SendMail {
public static void main(String[] args) {

final String username = "knavin12@gmail.com";
final String password = "password";

Properties props = new Properties();
props.put("mail.smtp.auth”, "true");

props.put("mail.smtp.starttls.enable", "true");

props.put("mail.smtp.host", "smtp.gmail.com");
props.put("mail.smtp.port", "587");

Prepared by: Navin Sharma 17 Unit-5: Network Programming

Downloaded from CSIT Tutor

Session session = Session.getInstance(props,
new javax.mail.Authenticator() {
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication(username, password);

1;

try {

Message message = new MimeMessage(session);
message.setFrom(new InternetAddress("knavin12@gmail.com"));
message.setRecipients(Message.RecipientType.TO,
InternetAddress.parse("knavin12@gmail.com"));
message.setSubject("Testing Subject");
message.setText("Hello Navin,"
+ "\n\n Congrates u succeded sending mail\n through Java.mail
APL");

Transport.send(message);

System.out.printIn("Your email has been sent successfully");

} catch (MessagingException e) {
throw new RuntimeException(e);

Prepared by: Navin Sharma 18 Unit-5: Network Programming

Downloaded from CSIT Tutor

Chapter -6 Java Beans

A Java Bean is a software component that has been designed to be reusable in a variety of different
environments. There is no restriction on the capability of a Bean. It may perform a simple function, such
as checking the spelling of a document, or a complex function, such as forecasting the performance of a
stock portfolio.

Beans are important, because they allow you to build complex systems from software components.
These components may be provided by you or supplied by one or more different vendors. Java Beans
defines an architecture that specifies how these building blocks can operate together. To better
understand the value of Beans, consider the following. Hardware designers

have a wide variety of components that can be integrated together to construct a system. Resistors,
capacitors, and inductors are examples of simple building blocks. Integrated circuits provide more
advanced functionality. All of these different parts can be reused. It is not necessary or possible to
rebuild these capabilities each time a new system is needed. Also, the same pieces can be used in
different types of circuits. This is possible because the behavior of these components is understood and
documented.

Unfortunately, the software industry has not been as successful in achieving the benefits of reusability
and interoperability. Large applications grow in complexity and become very difficult to maintain and
enhance. Part of the problem is that, until recently, there has not been a standard, portable way to write
a software component. To achieve the benefits of component software, a component architecture is
needed that allows programs to be assembled from software building blocks, perhaps provided by
different vendors. It must also be possible for a designer to select a component, understand its
capabilities, and incorporate it into an application. When a new version of a component becomes
available, it should be easy to incorporate this functionality into existing code.Fortunately, Java Beans
provides just such an architecture.

Advantages of Java Beans

A software component architecture provides standard mechanisms to deal with software building
blocks. The following list enumerates some of the specific benefits that Java technology provides for a
component developer:

e Bean obtains all the benefits of Java’s “write-once, run-anywhere” paradigm.

e The properties, events, and methods of a Bean that are exposed to an application builder tool
can be controlled.

e A Bean may be designed to operate correctly in different locales, which makes it useful in global
markets.

e Auxiliary software can be provided to help a person configure a Bean. This software is only
needed when the design-time parameters for that component are being set. It does not need to
be included in the run-time environment.

e The configuration settings of a Bean can be saved in persistent storage and restored at a later
time.

e A Bean may register to receive events from other objects and can generate events that are sent
to other objects.

Downloaded from CSIT Tutor

Steps for creating a new Bean using netbeans

Here are the steps that you must follow to create a new Bean:
1. Create a directory for the new Bean.

2. Create the Java source file(s).

3. Compile the source file(s).

4. Create a manifest file.

5. Generate a JAR file.

6. Start the BDK (Bean Development Kit).

7. Test.

Explanation
1. Create a Directory for the New Bean (You can use netbeans and create a new project for that)
2. Create the Source File for the New Bean

//Colors.java
import java.awt.*;
import java.awt.event.*;

public class Colors extends Canvas {
transient private Color color;

private boolean rectangular;

public Colors() {

addMouselistener(new MouseAdapter() {
public void mousePressed(MouseEvent me) {
change();

}

1;

rectangular = false;

setSize(200, 100);

change();

}

public boolean getRectangular() {

return rectangular;

}

public void setRectangular(boolean flag) {
this.rectangular = flag;

Downloaded from CSIT Tutor

repaint();
}
public void change() {
color = randomColor();
repaint();
}
private Color randomColor() {
int r = (int)(255*Math.random());
int g = (int)(255*Math.random());
int b = (int)(255*Math.random());
return new Color(r, g, b);
}
public void paint(Graphics g) {
Dimension d = getSize();
int h = d.height;
int w = d.width;
g.setColor(color);
if(rectangular) {
g.fillRect(0, 0, w-1, h-1);
}
else{
g.filloval(0, 0, w-1, h-1);
}
}
}

3. Compile the Source Code for the New Bean
Compile the source code to create a class file. Type the following:
javac Colors.java.

4. Create a Manifest File

You must now create a manifest file. First, switch to the c:\bdk\demo directory. This
is the directory in which the manifest files for the BDK demos are located. Put the
source code for your manifest file in the file colors.mft. It is shown here:

Name: sunw/demo/colors/Colors.class

Java-Bean: True

This file indicates that there is one .class file in the JAR file and that it is a Java Bean.
Notice that the Colors.class file is in the package sunw.demo.colors and in the
subdirectory sunw\demo\colors relative to the current directory.

Downloaded from CSIT Tutor

Creating Java Beans using NetBeans

1. Start NetBeans. Choose File > New Project... from the menu.

=
£ New Project

Steps Choose Project
1. Choose Project Categories: Projects:
2. O Java

& Java Application

& |ava Desktop Application

& |ava Class Library

& |ava Project with Existing Sources
&Y |ava Free-Form Project

E Maven
E MNetBeans Modules
+ @ samples

Description:

Creates a new Java SE application in a standard IDE project. You can
also generate a main class in the project. Standard projects use an
IDE-generated Ant build script to build, run, and debug your project.

| Mext = | | Cancel | | Help |

2. Select Java from the Categories list and select Java Application from the Projects list. Click Next

Downloaded from CSIT Tutor

£ New Java Application

Steps MName and Location

. Name and Location PrOSCteme: [Snapacp
Project Location: |/homejjonathan/NetBeansProjects I.Eirg\«'u'se....I
Project Folder: [homefjonathan/MNetBeansProjects/SnapApp

Use Dedicated Folder for Storing Libraries

Create Main Class

& Set as Main Project

I,{ Ba‘:kj | Finish | | Cancel 1 Help ,I

3. Enter SnapApp as the application name. Uncheck Create Main Class and click Finish. NetBeans creates
the new project and you can see it in NetBeans' Projects pane:

Projects 4l X Files
- & SnapApp

+ [Source Packages
+ @@ Libraries

4. Right-click on the SnapApp project and choose New > JFrame Form... from the popup menu.

Downloaded from CSIT Tutor

-
£ New JFrame Form

Steps Name and Location

1. Choose File Type . Class Name: [SnapFrame
2. Name and Location

Project: SnapApp
Location: Source Packages E2

Package: snapapp ’_vl

Created File: |vathan/MNetBeansProjects/SnapApp/sre/snapapp/SnapFrame.java

= Eackl | Einish | | Cancel 1 Help |

5. Fill in SnapFrame for the class name and snapapp as the package. Click Finish. NetBeans creates the
new class and shows its visual designer:

200 DE 7.0
b 3 Q-
Sr L <o T W b e G-
eiceiy o x i S Start Page X [g] NewJFrame java % [E SnapFrame java * <] @G |Palcte L
= & snapapp . BEd O3 ==2In | - Swing Containers 8
= ource | Design i ; v 3
= Source Packages g LE 1D U ¢ [l panel £ Tabbed Pane
- BB snapapp o
[G SnapFrame java ¥ Use the Source button (in the toolbar) to switch to the source code. ® |0 split Pane [E Scroll Pane
+ @ Libraries
[= Tool Bar B Desktop Pane
I internal Frame [%] Layered Pane
~ Swing Controls
el | abel Butten
Toggle Button @ Check Box .
[[Frame] - Properties > x
| Properties | Binding
Events Code
[Frame] - Navigator Inspector @x

— B Form SnapFrame
+ B other components
+ [Z] UFrame]

alwaysOnTop

[JFrame] (7]

Output - SnapApp (clean) § x| Tasks
init:

d ean:
Created dir: /home/jenathan/NetBeansProjects/SnapApp/build

Updating property file: /home/jonathan/NetBeansProjects/SnapApp/build/built-clean.properties
Deleting directory /home/jonathan/NetBeansProjects/SnapApp/bui

clean:
3 | BUILD SUCCESSFUL. (total time: O seconds)

In the Projects pane on the left, you can see the newly created SnapFrame class. In the center of the
screen is the NetBeans visual designer. On the right side is the Palette, which contains all the

Downloaded from CSIT Tutor

components you can add to the frame in the visual designer.

6. Take a closer look at the Palette. All of the components listed are beans. The components are grouped
by function. Scroll to find the Swing Controls group, then click on Button and drag it over into the visual
designer. The button is a bean!

Start Page * [£] SnapFrame.java X

WE e REErhLb

Source | Design |

jButtonl

Under the palette on the right side of NetBeans is an inspector pane that you can use to examine and
manipulate the button. Try closing the output window at the bottom to give the inspector pane more
space.

jButtonl [|Button] - Properties Ik X

| Properties | Einding
Events Code

¥ Properties

action [

background [[182.167.148]]

font Dejavu Sans 13 Flal.)

foreground B [F0.59,55]]

ican | - |

MMemaonic]

text jButtonl ™

toolTipText]

* Other Properties

UIClassID ButtonUl bl

artimniCarmrmand H=THt 2 | |

Downloaded from CSIT Tutor

Properties

The properties of a bean are the things you can change that affect its appearance or internal state. For
the button in this example, the properties include the foreground color, the font, and the text that
appears on the button. The properties are shown in two groups. Properties lists the most frequently
used properties, while Other Properties shows less commonly used properties.

Go ahead and edit the button's properties. For some properties, you can type values directly into the
table. For others, click on the ... button to edit the value. For example, click on ... to the right of the
foreground property. A color chooser dialog pops up and you can choose a new color for the foreground
text on the button. Try some other properties to see what happens. Notice you are not writing any code.

Events

Beans can also fire events. Click on the Events button in the bean properties pane. You'll see a list of

every event that the button is capable of firing.

jButtonl [|Button] - Properties

Properties

| Ewvents

¥ Events

I

Einding

Code

actionPerformed

= nonez

ancestorAdded

= nonez

ancestorMoved

= nonez

ancestorMoved

= nones

ancestorRemoved

= nones

ancestorResized

Enones=

caretPositionChanged

= none:=

componentidded

= nonez=

componentHidden

= nonez

componentMoved

= nonez

reamnnnantDamn moeand

You can use NetBeans to hook up beans using their events and properties. To see how this works, drag a

Il T T

AR RN AR RERE AR RE AL

Label out of the palette into the visual designer for SnapFrame.

Add a label to the visual designer

Downloaded from CSIT Tutor

Start Page X [£] SnapFrame.java X

Source | Design I I_[klﬁ] | | =

jButtonl

jLabell

Wiring the Application

To wire the button and the label together, click on the Connection Mode button in the visual designer
toolbar.

Page ¥ = SnapFrame.java *

ce IFirgnI E;ﬁ@ | | =

Connection Mode

|Buttonl

jLabell

Click on the button in the SnapFrame form. NetBeans outlines the button in red to show that it is the
component that will be generating an event.

Downloaded from CSIT Tutor

t Page X [E SnapFrame.java X

ree | Design .l S 'IE] =

jButtonl

I

Click on the label. NetBeans' Connection Wizard pops up. First you will choose the event you wish to
respond to. For the button, this is the action event. Click on the + next to action and select
actionPerformed. Click Next >.

-
£ Connection Wizard

Steps Select Source Event

1. Select Source Event
2. Specify Targst
Operation Events

Source Component: ||Buttonl

mouseWwheel

mouse

change

component

rmouseMotion

container

item

action
actionPerformed

Event Handler Method

Method Name: |jButtonlActionPerformed v |

|. MNext = | | Cancel | | Help |

Now you get to choose what happens when the button fires its action event. The Connection Wizard
lists all the properites in the label bean. Select text in the list and click Next.

Downloaded from CSIT Tutor

Connection Wizard

Steps Specify Target Operation

Select Source Event
Specify Target
Operation

Enter Parameters

Target Component: |jLabell
® Set Property Method Call User Code

nextFocusableComponant

opague

preferredsize

requestFocusEnabled
text

toolTipText
transferHandler

verifylnputWwhenFocusTarget

PP SRR I, N FP R

< Eackl | Mext = | | Cancel 1 Help |

In the final screen of the Connection Wizard, fill in the value you wish to set for the text property. Click
on Value, then type You pressed the button! or something just as eloquent. Click Finish.

-
@ Connection Wizard

Steps Enter Parameters

Select Source Event Parameters
Specify Target
Operation String
Enter Parameters
Get Parameter From:

® Wvalue: You pressed the button!

Property:

Method Call:

User Code:

Generated Parameters Preview:

"fou pressed the button!"

| = Eackl | Einish | | Cancel 1 Help

Downloaded from CSIT Tutor

NetBeans wires the components together and shows you its handiwork in the source code editor.

3 @SuppresswWarnings("unchecked")

3 [Generated Code]

3

4 private void jButtonlActionPerformed{java.awt.event.ActionBEvent evtl {
5T jLabell.setText("You pressed the button!");

5 I

7

]2

Click on the Design button in the source code toolbar to return to the Ul designer. Click Run Main
Project or press F6 to build and run your project.

||Buttonl

jLabell

NetBeans builds and runs the project. It asks you to identify the main class, which is SnapFrame. When
the application window pops up, click on the button. You'll see your immortal prose in the label.

Downloaded from CSIT Tutor

jButtonl

You pressed the button!

Notice that you did not write any code. This is the real power of JavaBeans — with a good builder tool
like NetBeans, you can quickly wire together components to create a running application.

Using a Third-Party Bean

Almost any code can be packaged as a bean. The beans you have seen so far are all visual beans, but
beans can provide functionality without having a visible component.

The power of JavaBeans is that you can use software components without having to write them or
understand their implementation.

This page describes how you can add a JavaBean to your application and take advantage of its
functionality.

Adding a Bean to the NetBeans Palette

Download an example JavaBean component, BumperSticker. Beans are distributed as JAR files. Save the
file somewhere on your computer. BumperSticker is graphic component and exposes one method, go(),
that kicks off an animation.

To add BumpersSticker to the NetBeans palette, choose Tools > Palette > Swing/AWT Components from
the NetBeans menu.

Downloaded from CSIT Tutor

r

£ Palette Manager
Palette Content:

= @ Palette ~ Add from JAR...
Swing Containers '

Swing Controls (Add from Library...
Swing Menus . '
Swing Windows

= :
=
=
=
B Swing Fillers
=
=
=
=
=

I...ﬂ;dd from Project... |

EERERE

AWT

Borders

Eeans

|awva Persistence
Look and Feels

£ E

=
=
=
=
=
=
=
=
=
=

|. Mew Category... |

| Reset Palette |

|§|nse|

Click on the Add from JAR... button. NetBeans asks you to locate the JAR file that contains the beans you
wish to add to the palette. Locate the file you just downloaded and click Next.

Downloaded from CSIT Tutor

"
£ Install Components to Palette

Steps Choose a JAR file containing components

Select JAR File
Select Components | New Fnlder| |Rename Fi|E|

Selact Palette
Category |,“tmp hd |

|Folders | |Eiles

cvedy s+ BumpersSticker.jar
hsperfdata_jonathan/

jarfscachejonathany

kde-jonathan/

keyring-Yfxdiof

ksocket-jonathanf

orbit-gdmy

arbit-jonathanf

Selection: ftmp

|Bumper5ticker.jar

Filter:
JAR Archives

MNext = | Cancel 1 Help |

NetBeans shows a list of the classes in the JAR file. Choose the ones you wish you add to the palette. In
this case, select BumperSticker and click Next

Downloaded from CSIT Tutor

"
£ Install Components to Palette

Steps Choose the components to add to the palette

1. Select JAR File Available Components:

2. Select Components

3. Select Palette
Category

BumperSticker
BumpersStickerBeaninfo

@® Show All JavaBeans

< Eackl | MNext = | | Cancel 1 Help |

Finally, NetBeans needs to know which section of the palette will receive the new beans. Choose Beans
and click Finish.

Downloaded from CSIT Tutor

"
£ Install Components to Palette

Steps Choose the palette category in which to add the components

Select JAR File Palette Cateqgories:
Select Components 0
Select Palette
Category

Swing Containers
B swing Controls
Swing Menus
Swing Windows

|

5]

BH Swing Fillers
B AWT

@& Borders
|

]

|

Beans
Java Persistence
Look and Feels

< Eackl | Finish | | Cancel 1 Help |

Click Close to make the Palette Manager window go away. Now take a look in the palette.
BumperSticker is there in the Beans section.

Using Your New JavaBean

Go ahead and drag BumperSticker out of the palette and into your form.

Downloaded from CSIT Tutor

SnapFrame java *

sorce (DESORY @@ @ S =T L b

\Butizal

jLabell

[

| @ theJa\;a Tutoriall«

You can work with the BumperSticker instance just as you would work with any other bean. To see this
in action, drag another button out into the form. This button will kick off the BumperSticker's animation.

SnapFrame.java *

souce [Besignl] @ @ E = 2L

B L

jLabell

| ® the Java Tutorial!

Downloaded from CSIT Tutor

Wire the button to the BumperSticker bean, just as you already wired the first button to the text field.

Begin by clicking on the Connection Mode button.

Click on the second button. NetBeans gives it a red outline.

Click on the BumperSticker component. The Connection Wizard pops up.
Click on the + next to action and select actionPerformed. Click Next >.

Select Method Call, then select go() from the list. Click Finish.

jButtonl

jButton2

You pressed the button!

| ¥ the Java Tutorial!

Run the application again. When you click on the second button, the BumperSticker component
animates the color of the heart.

Again, notice how you have produced a functioning application without writing any code.

Downloaded from CSIT Tutor

Downloaded from CSIT Tutor

Unit 7. Servlets and Java Server Pages

Servlets

Servlets are small programs that execute on the server side of a Web connection. Just as applets
dynamically extend the functionality of a Web browser, servlets dynamically extend the functionality of
a Web server.

A servlet is a Java programming language class used to extend the capabilities of servers that host
applications accessed via a request-response programming model. Although servlets can respond to any
type of request, they are commonly used to extend the applications hosted by Web servers. For such
applications, Java Servlet technology defines HTTP-specific servlet classes.The javax.servlet and
javax.servlet.http packages provide interfaces and classes for writing servlets. All servlets must
implement the Servlet interface, which defines life-cycle methods.

The Life Cycle of a Servlet
Three methods are central to the life cycle of a servlet. These are init(), service(), and destroy(). They

are implemented by every servlet and are invoked at specific times by the server. Let us consider a
typical user scenario to understand when these methods are called.

First, when a user enters a Uniform Resource Locator (URL) to a Web browser. The browser then
generates an HTTP request for this URL. This request is then sent to the appropriate server.

Second, this HTTP request is received by the Web server. The server maps this request to a particular
servlet. The servlet is dynamically retrieved and loaded into the address space of the server.

Third, the server invokes the init() method of the servlet. This method is invoked only when the
servlet is first loaded into memory. It is possible to pass initialization parameters to the servlet so it may
configure itself.

Fourth, the server invokes the service() method of the servlet. This method is called to process the
HTTP request. It is possible for the servlet to read data that has been provided in the HTTP request. It
may also formulate an HTTP response for the client. The servlet remains in the server’s address space
and is available to process any other HTTP requests received from clients. The service() method is called
for each HTTP request.

Finally, the server may decide to unload the servlet from its memory. The server calls the destroy()
method to relinquish any resources such as file handles that are allocated for the servlet. Important
data may be saved to a persistent store. The memory allocated for the servlet and its objects can then
be garbage collected.

The Servlet API

Two packages contain the classes and interfaces that are required to build serviets. These are
javax.servlet and javax.servlet.http. They constitute the Servlet APl.These packages are not part of the
Java core packages. Instead, they are standard extensions. Therefore, they are not included in the Java
Software Development Kit. You must download Tomcat or Glass Fish server to obtain their functionality.

Prepared by: Navin Sharma 1 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

The javax.servlet Package

The javax.servlet package contains a number of interfaces and classes that establish the framework in
which servlets operate.

The following table summarizes the core interfaces that are provided in this package. The most
significant of these is Servlet. All servlets must implement this interface or extend a class that
implements the interface.

The ServletRequest and ServletResponse interfaces are also very important.

Interface Description

Servlet Declares life cycle methods for a servlet.

ServletConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information about
their environment.

ServletRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

SingleThreadModel Indicates that the servlet is thread safe.

The following table summarizes the core classes that are provided in the javax.servlet package.

Class Description

GenericServlet Implements the Servlet and ServletConfig interfaces.
ServletInputStream Provides an input stream for reading requests from a client.
ServletOutputStream Provides an output stream for writing responses to a client.
ServletException Indicates a servlet error occurred.

UnavailableException Indicates a servlet is unavailable.

The Servlet Interface

All servlets must implement the Servlet interface. It declares the init(), service(), and destroy()
methods that are called by the server during the life cycle of a servlet. The methods defined by Servlet
are shown below:

Prepared by: Navin Sharma 2 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Method Description

void destroy() Called when the servlet is unloaded.

ServletConfig getServletConfig() Returns a ServletConfig object that contains
any initialization parameters.

String getServletInfo() Returns a string describing the servlet.
void init(ServletConfig sc) Called when the servlet is initialized.
throws ServletException Initialization parameters for the servlet can be

obtained from sc. An UnavailableException
should be thrown if the servlet cannot be

initialized.
void service(ServletRequest reg, Called to process a request from a client. The
ServletResponse res) request from the client can be read from reg.
throws ServletException, The response to the client can be written to
I0Exception res. An exception is generated if a servlet or

IO problem occurs.

Table 27-1. The Methods Defined by Servlet

The ServletRequest Interface
The ServletRequest interface is implemented by the server. It enables a servlet to obtain information

about a client request. Several of its methods are summarized in Table below.

Prepared by: Navin Sharma 3 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Method
Object getAttribute(String attr)

String getCharacterEncoding()

int getContentLength()

String getContentType()

ServletinputStream getInputStream()
throws IOException

String getParameter(String pname)

Enumeration getParameterNames()

String| | getParameterValues(String name)

String getProtocol()

BufferedReader getReader()
throws I0Exception

String getRemote Addr()
String getRemoteHost()

String getScheme()

String getServerName()
int getServerPort{)

Prepared by: Navin Sharma

Description

Eeturns the value of the attribute
named attr.

Returns the character encoding of
the request.

Returns the size of the request. The
value —1 is returned if the size is
unavailable.

Returns the type of the request. A
null value is returned if the type
cannot be determined.

Returns a ServletInputStream
that can be used to read binary
data from the request. An
IllegalStateException is thrown
if getReader() has already been
invoked for this request.

Eeturns the value of the parameter
named pname.

Eeturns an enumeration of the
parameter names for this request.

Eeturns an array containing values
associated with the parameter
specified by name.

Returns a description of the
protocol.

Returns a buffered reader that

can be used to read text from the
request. An IllegalStateException
is thrown if getInputStream() has
already been invoked for this

request.

Eeturns the string equivalent of the
client II” address.

Eeturns the string equivalent of the
client host name.

Returns the transmission scheme of
the URL used for the request (for

example, “http”, “ftp”).
Eeturns the name of the server.

Returns the port number.

4 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Table 27-3. Various Methods Defined by ServletRequest

The ServletResponse Interface

The ServletResponse interface is implemented by the server. It enables a servlet to

response for a client. Several of its methods are summarized in Table below.

Method
String getCharacterEncoding()
ServletOutputStream

getOutputStream()
throws IOException

PrintWriter getWriter()
throws IOException

vioid set’C DﬂtEﬂtLEl‘iBﬂ'i[mt size)
void setContentType(String type)

Description

Returns the character encoding for the
response.

Returns a ServletOutputStream that can be
used to write binary data to the response.
An IllegalStateException is thrown if
getWriter() has already been invoked for
this request.

Returns a PrintWriter that can be used
to write character data to the response.
An lllegalStateException is thrown if
getOutputStream() has already been
invoked for this request.

Sets the content length for the response to size.
Sets the content type for the response to fype.

Table 27-4. Various Methods Defined by ServletResponse

Note: For detailed information about javax.servlet package refer to the following link

http://docs.oracle.com/javaee/1.4/api/javax/serviet/package-summary.html

Reading Servlet Parameters

formulate a

The ServletRequest class includes methods that allow to read the names and values of parameters that

are included in a client request. We will develop a servlet that illustrates their use. The example contains

two files. A Web page is defined in index.jsp and a servlet is defined in PostParametersServlet.java. The

HTML source code for index.jsp is shown in the following listing. It defines a table that contains two

labels and two text fields. One of the labels is Employee and the other is Phone. There is also a submit

button. Notice that the action parameter of the form tag specifies a URL. The URL identifies the servlet
to process the HTTP POST request.

//index.jsp
<html>
<body>
<center>

Prepared by: Navin Sharma 5

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

http://docs.oracle.com/javaee/1.4/api/javax/servlet/package-summary.html

<form name="Form1" method="post" action="PostParametersServlet">
<table>

<tr>

<td>Employee</td>

<td><input type=textbox name="e" size="25" value=""></td>
</tr>

<tr>

<td>Phone</td>

<td><input type=textbox name="p" size="25" value=""></td>
</tr>

</table>

<input type=submit value="Submit">

</body>

</html>

//PostParametersServlet.java
import java.io.*;

import java.util.*;

import javax.servlet.*;

public class PostParametersServlet extends GenericServlet {

public void service(ServletRequest request,ServletResponse response)

throws ServletException, IOException {
// Get print writer.
PrintWriter pw = response.getWriter();
// Get enumeration of parameter names.
Enumeration e = request.getParameterNames();
// Display parameter names and values.
while(e.hasMoreElements()) {
String pname = (String)e.nextElement();
pw.print(pname + " =");
String pvalue = request.getParameter(pname);
pw.printin(pvalue);
}
pw.close();
}
}

output
e =navin
p=9841

Prepared by: Navin Sharma 6

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

The javax.servlet.http Package

The javax.servlet.http package contains a number of interfaces and classes that are commonly used by
servlet developers. You will see that its functionality makes it easy to build servlets that work with HTTP
requests and responses.

The following table summarizes the core interfaces that are provided in this package:

Interface Description

HttpServletRequest Enables servlets to read data from an HTTP request.
HttpServletResponse Enables servlets to write data to an HTTP response.
HttpSession Allows session data to be read and written.
HttpSessionBindingListener Informs an object that it is bound to or unbound

from a session.
The following table summarizes the core classes that are provided in this package. The most important
of these is HttpServlet. Servlet developers typically extend this class in order to process HTTP requests.
Class Description

Cookie Allows state information to be stored on a client
machine.
HttpServlet Provides methods to handle HTTP requests and
responses.
HttpSessionEvent Encapsulates a session-changed event.
HttpSessionBindingEvent Indicates when a listener is bound to or unbound from a session

value, or that a session attribute changed.
The HttpServietRequest Interface
The HttpServletRequest interface is implemented by the server. It enables a servlet to obtain
information about a client request. Several of its methods are shown in Table below.

Method Description

String getAuthType() Returns authentication scheme.

Cookie[| getCookies() Returns an array of the cookies in this
request.

long getDateHeader(String field) Returns the value of the date header
field named field.

String getHeader(String field) Returns the value of the header field
named field.

Enumeration getHeaderNames() Returns an emumeration of the header
names.

int getintHeader(String field) Returns the int equivalent of the header
field named field.

Prepared by: Navin Sharma 7 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

String getMethod()

String getPathlnfo()

String getPathTranslated()

String getQueryString()
String getRemoteUser()

String getRequestedSessionld()
String getRequestURI()

String Buffer getRequestURL()
String getSdrvletPath()

HitpSession getSession()

HitpSession getSession(boolean new)

boolean

boolean
isRequestedSessionld FromURL()

boolean isRequestedSessionldValid()

isRequestedSessionld FromCookie()

Returns the HTTP method for this
request.

Returns any path information that is
located after the servlet path and before
a query string of the URL.

Returns any path information that

is located after the servlet path and
before a query string of the URL after
translating it to a real path.

Returns any query string in the URL.

Eeturns the name of the user who
issued this request.

Eeturns the ID of the session.
Returns the URL
Returns the URL.

Returns that part of the URL that
identifies the servlet.

Returns the session for this request.
If a session does not exist, one is created
and then returned.

If neww is true and no session exists,
creates and returns a session for this
request. Otherwise, returns the existing
session for this request.

Eeturns true if a cookie contains the
session ID. Otherwise, returns false.

Eeturns true if the URL contains the
session [D. Otherwise, returns false.

Returns true if the requested session ID
is valid in the current session context.

Table 27-5. Various Methods Defined by HttpSernvletRequest

The HttpServietResponse Interface

The HttpServletResponse interface is implemented by the server. It enables a servlet to formulate an
HTTP response to a client. Several constants are defined. These correspond to the different status codes
that can be assigned to an HTTP response. For example, SC_OK indicates that the HTTP request
succeeded and SC_NOT_FOUND indicates that the requested resource is not available. Several methods

of this interface are summarized in Table below.

Prepared by: Navin Sharma

8 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Method
void addCookie(Cookie cookie)

boolean containsHeader(String field)

Description

Adds cookie to the HTTP response.

Returns true if the HTTP response

header contains a field named field.

Determines if the session ID must
be encoded in the URL identified
as url. If so, returns the modified
version of url. Otherwise, returns
url. All URLs generated by a
servlet should be processed by
this method.

Determines if the session ID
must be encoded in the URL
identified as url. If so, returns
the modified version of url.
Otherwise, returns wrl. All URLs
passed to sendRedirect() should
be processed by this method.

Sends the error code ¢ to the client.

String encodeURL(5tring url)

String encodeRedirectURL(String url)

void sendError(int c)
throws IOException

Sends the error code ¢ and message
s to the client.

void sendError(int c, String s)
throws IOException

void sendRedirect(String url) Redirects the client to url.

throws IOException

void setDateHeader(String field, long msec) Adds field to the header with date
value equal to msec (milliseconds
since midnight, January 1, 1970,
GMT).

Adds field to the header with value
equal to value.

Adds field to the header with value
equal to value.

Sets the status code for this
response to code.

void setHeader(String field, String value)
void setIntHeader(String field, int value)

void setStatus(int code)

Table 27-6. Various Methods Defined by HttpServietResponse

The Cookie Class

The Cookie class encapsulates a cookie. A cookie is stored on a client and contains state information.
Cookies are valuable for tracking user activities. For example, assume that a user visits an online store. A
cookie can save the user’s name, address, and other information. The user does not need to enter this
data each time he or she visits the store. A servlet can write a cookie to a user’s machine via the
addCookie() method of the HttpServletResponse interface. The data for that cookie is then included in
the header of the HTTP response that is sent to the browser.

The names and values of cookies are stored on the user’s machine. Some of the information that is

Prepared by: Navin Sharma 9 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

saved for each cookie includes the following:
e The name of the cookie
e The value of the cookie
o The expiration date of the cookie
e The domain and path of the cookie

The expiration date determines when this cookie is deleted from the user’s machine. If an expiration
date is not explicitly assigned to a cookie, it is deleted when the current browser session ends.

Otherwise, the cookie is saved in a file on the user’s machine.

The domain and path of the cookie determine when it is included in the header of an HTTP request. If
the user enters a URL whose domain and path match these values, the cookie is then supplied to the

Web server. Otherwise, it is not.

The methods of the Cookie class are summarized in Table below

Method
Object clone()

String getComment()
String getDomain()
int getMaxAge()
String getName()
String getPath()
boolean getSecure()

String getValue()

int getVersion()

void setComment{String c)
void setDomain(String d)

void setMaxAge(int secs)

void setPath(String p)

void setSecure{boolean secure)

void setValue(String v)

void setVersion(int v)

Description

Returns a copy of this object.
Returns the comment.
Returns the domain.

Returns the age (in seconds).
Returns the name.

Returns the path.

Returns true if the cookie must be sent using
only a secure protocol. Otherwise, returns false.

Returns the value.

Returns the cookie protocol version. (Will be
Oorl.)
Sets the comment to c.

Sets the domain to d.

Sets the maximum age of the cookie to secs.
This is the number of seconds after which the
cookie is deleted. Passing -1 causes the cookie
to be removed when the browser is terminated.

Sets the path to p.

Sets the security flag to secure, which means
that cookies will be sent only when a secure
protocol is being used.

Sets the value to o.

Sets the cookie protocol version to v, which will
beDorl.

Table 27-8. The Methods Defined by Cookie

The HttpServiet Class

The HttpServlet class extends GenericServlet. It is commonly used when developing servlets that receive

Prepared by: Navin Sharma

10 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

and process HTTP requests. The methods of the HttpServlet class are summarized in Table below.

Method

void doDelete(HttpServletRequest reg,
HttpServletResponse res)
throws IOException, ServletException

void doGet(HttpServletRequest reg,
HttpServletResponse res)
throws IOException, ServletException

void doHead(HttpServletRequest req,
HttpServletResponse res)
throws IOException, ServletException

void doOptions(HttpServletRequest reg,
HttpServletResponse res)
throws IOException, ServletException

void doPost(HttpServletRequest req,
HttpServletResponse res)
throws IOException, ServletException

void doPut(HttpServletRequest reg,
HttpServletResponse res)
throws IOException, ServletException

void doTrace(HttpServletRequest reg,
HttpServletResponse res)
throws I0Exception, ServletException

long getLastMeodified(HttpServietRequest reqg)

void service(HttpServletRequest reg,
HttpServletResponse res)
throws IOException, ServletException

Description

Performs an HTTP DELETE.

Performs an HTTF GET.

Performs an HTTF HEAD.

Performs an HTTP OPTIONS.

Performs an HTTP POST.

Performs an HTTF PUT.

Performs an HTTF TRACE.

Returns the time (in
milliseconds since midnight,
January 1, 1970, GMT) when
the requested resource was
last modified.

Called by the server when an
HTTPT request arrives for this
servlet. The arguments provide

access to the HTTP request and
response, respectively.

Table 27-9. The Methods Defined by HitpServlet

Handling HTTP Requests and Responses

The HttpServlet class provides specialized methods that handle the various types of HTTP requests. A
servlet developer typically overrides one of these methods. These methods are doDelete(), doGet(),
doHead(), doOptions(), doPost(), doPut(), and doTrace().

Handling HTTP GET Requests

Here we will develop a servlet that handles an HTTP GET request. The servlet is invoked when a form on
a Web page is submitted.

//index.jsp

<html>

Prepared by: Navin Sharma 11 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Testing GET</title>
</head>
<body>
<form action="testingget" method="get">
<label style="color: green;"> Testing Get:</label>
</br>
First Name: <input type="text" name="firstName" size="20">

Last Name: <input type="text" name="surname" size="20">

<input type="submit" value="Submit"></br></br>
</form>
</body>
</html>

//TestingGet

import java.io.PrintWriter;

import java.io.|OException;

import java.sql.*;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.UnavailableException;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class TestingGet extends HttpServlet {

private Connection connection;
private Statement statement;

// set up database connection and create SQL statement
public void init(ServletConfig config) throws ServletException
{

// attempt database connection and create Statement

try

{

connection=DriverManager.getConnection("jdbc:mysql://localhost:3306/testingget","root","");

// create Statement to query database

statement = connection.createStatement();
}// end try
// for any exception throw an UnavailableException to
// indicate that the servlet is not currently available
catch (Exception exception)

{

exception.printStackTrace();

Prepared by: Navin Sharma 12

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

throw new UnavailableException(exception.getMessage());
}// end catch
} // end method init

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

try {

String firstName = request.getParameter("firstName").toString();

String surname = request.getParameter("surname").toString();

try {

statement = connection.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

ResultSet uprs = statement.executeQuery(
"SELECT * FROM names");

uprs.moveTolnsertRow();
uprs.updateString("firstname", firstName);
uprs.updateString("lastname",surname);
uprs.insertRow();
uprs.beforeFirst();
}

catch (SQLException sqlException)

{
sqlException.printStackTrace();

}
try

{

// create Statement for querying database
statement = connection.createStatement();

// query database
ResultSet resultSet = statement.executeQuery(

"SELECT * from names");
out.printin("<html|>");
out.printin("<head>");
out.printin("</head>");
out.printin("<body>");
out.printin("<p>Welcome " + firstName + " " + surname + "</p>");
out.printin("<p>People currently in the database:</p>");
// process query results
ResultSetMetaData metaData = resultSet.getMetaData();
int numberOfColumns = metaData.getColumnCount();
for (inti=1;i<=numberOfColumns; i++)

Prepared by: Navin Sharma 13 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

out.printin("<label style='color:red'>"+ metaData.getColumnName(i)+"</label>");
out.printin("</br>");
while (resultSet.next())
{
for (inti=1;i<=numberOfColumns; i++)
out.printin("<label style='color:blue'>"+ resultSet.getObject(i)+"</label>");
out.printIn("</br>");
}// end while
out.printin("</body>");
out.printin("</html>");
} // end try
catch (SQLException sqlException)
{
sqlException.printStackTrace();
}// end catch

}/end try

finally {
out.close();
}
}

// close SQL statements and database when servlet terminates
public void destroy()
{
// attempt to close statements and database connection
try
{
statement.close();
connection.close();
}// end try
// handle database exceptions by returning error to client
catch(SQLException sqlException)
{
sqlException.printStackTrace();
}// end catch
}// end method destroy

}
Handling HTTP POST Requests

Here we will develop a servlet that handles an HTTP POST request. The servlet is invoked when a form
on a Web page is submitted.

//index.jsp
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Testing POST</title>

Prepared by: Navin Sharma 14 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

</head>
<body>
<form action="testingpost" method="post">
<label style="color: red;"> Testing Post:</label>
</br>
First Name: <input type="text" name="firstName" size="20">

<input type="submit" value="Submit">

</form>
</body>
</html>

//TestingPost

import java.io.lOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class TestingPost extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
String firstName = request.getParameter("firstName").toString();
out.printin("<htmlI>");
out.printin("<head>");
out.println("</head>");
out.printin("<body>");
out.printin("<label style='color:red'>Welcome </label>");
out.print("<label style='color:green'>"+firstName+"</label>");
out.printin("</body>");
out.printin("</html>");}
finally {
out.close();
}
}
}

Using Cookies

Now, let’s develop a servlet that illustrates how to use cookies. The servlet is invoked when a form on a

Web page is submitted. The example contains three files as summarized here:

File Description

index.jsp Allows a user to specify a value for the cookie
named MyCookie.

AddCookie.java Processes the submission of AddCookie.htm.

GetCookie.java Displays cookie values.

Prepared by: Navin Sharma 15

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

//index.jsp
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Testing Cookies</title>
</head>
<body>
</form>
<form action="addCookie" method="post">
<label style="color: red;"> Testing Cookies</label>
</br>
Enter the value for cookie</br>
First Name: <input type="text" name="firstName" size="20">

Last Name: <input type="text" name="surname" size="20">

<input type="submit" value="Submit">

</form>
<label>Click below to get Cookies Value</label></br>
click here

</body>
</html>

//AddCookie.java

import java.io.|OException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

// Get parameter from HTTP request.

String data = request.getParameter("firstName");

String datal = request.getParameter("surname");

// Create cookie.
Cookie cookie = new Cookie("FirstCookie", data);
Cookie cookiel = new Cookie("SecondCookie", datal);

// Add cookie to HTTP response.
response.addCookie(cookie);
response.addCookie(cookiel);
// Write output to browser.
out.printIn("<htmlI>");

Prepared by: Navin Sharma 16

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

out.printin("<head>");
out.println("<title>Servlet AddCookie</title>");
out.println("</head>");
out.printin("<body>");
out.printIn("MyCookie has been set to");
out.printin(data);
out.printin("
");
out.printin(datal);
out.println("</body>");
out.println("</html>");

}Hinally {
out.close();

}

}
}

//GetCookie.java

import java.io.|OException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
Cookie[] cookies = request.getCookies();
out.printin("<html|>");
out.println("<head>");
out.println("<title>Servlet GetCookie</title>");
out.println("</head>");
out.printin("<body>");
out.printin("");
for(int i = 0; i < cookies.length; i++) {
String name = cookies[i].getName();
String value = cookiesl[i].getValue();
out.printIn("name =" + name +
"svalue =" + value);
out.printin("</br>");
out.printin("</body>");
out.printIn("</html>");
}

}
finally {

Prepared by: Navin Sharma 17 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

out.close();
}
}
}

Session Tracking
HTTP is a stateless protocol. Each request is independent of the previous one. However, in some

applications, it is necessary to save state information so that information can be collected from several
interactions between a browser and a server. Sessions provide such a mechanism.

A session can be created via the getSession() method of HttpServietRequest. An HttpSession object is
returned. This object can store a set of bindings that associate names with objects. The setAttribute(),
getAttribute(), getAttributeNames(), and removeAttribute() methods of HttpSession manage these
bindings. It is important to note that session state is shared among all the servlets that are associated
with a particular client.

//index.jsp
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Testing Cookies</title>
</head>
<body>
<label style="color: blue">Testing Session</label></br>
<label>Click below to get Session Value</label></br>
click here
</body>
</html>

//GetSession.java

import java.io.|OException;

import java.io.PrintWriter;

import java.util.Date;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
// Get the HttpSession object.
HttpSession hs = request.getSession(true);
// Get writer.
// response.setContentType("text/html");

Prepared by: Navin Sharma 18 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

//PrintWriter pw = response.getWriter();
out.print("");

// Display date/time of last access.

Date date = (Date)hs.getAttribute("date");

// Display current date/time.

out.printIn("<htmlI>");
out.printin("<head>");
out.println("<title>Servlet GetSession</title>");
out.printin("</head>");
out.printin("<body>");
if(date != null) {
out.print("Last access: " + date + "
");
}
date = new Date();
hs.setAttribute("date", date);
out.printIn("Current date: " + date);
out.printin("</body>");
out.printin("</html>");

}Hinally {
out.close();

}

}
}

JavaServer Pages (JSP)
In the previous chapter, you learned how to generate dynamic Web pages with servlets. You probably
have already noticed in our examples that most of the code in our servlets generated output that
consisted of the HTML elements that composed the response to the client. Only a small portion of the
code dealt with the business logic. Generating responses from servlets requires that Web application
developers be familiar with Java. However, many people involved in Web application development, such
as Web site designers, do not know Java. It is difficult for people who are not Java programmers to
implement, maintain and extend a Web application that consists of primarily of servlets. The solution to
this problem is JavaServer Pages (JSP)an extension of servlet technology that separates the presentation
from the business logic. This lets Java programmers and Web-site designers focus on their
strengthswriting Java code and designing Web pages, respectively.

JavaServer Pages simplify the delivery of dynamic Web content. They enable Web application
programmers to create dynamic content by reusing predefined components and by interacting with
components using server-side scripting. Custom-tag libraries are a powerful feature of JSP that allows
Java developers to hide complex code for database access and other useful services for dynamic Web
pages in custom tags. Web sites use these custom tags like any other Web page element to take
advantage of the more complex functionality hidden by the tag. Thus, Web-page designers who are not
familiar with Java can enhance Web pages with powerful dynamic content and processing capabilities.

The classes and interfaces that are specific to JavaServer Pages programming are located in packages

Prepared by: Navin Sharma 19 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

javax.servlet.jsp and javax.servlet.jsp.tagext.

JavaServer Pages Overview

There are four key components to JSPs-directives, actions, scripting elements and tag libraries.
Directives are messages to the JSP container-the server component that executes JSPs-that enable the
programmer to specify page settings, to include content from other resources and to specify custom tag
libraries for use in a JSP. Actions encapsulate functionality in predefined tags that programmers can
embed in a JSP. Actions often are performed based on the information sent to the server as part of a
particular client request. They also can create Java objects for use in JSP scriptlets. Scripting elements
enable programmers to insert Java code that interacts with components in a JSP (and possibly other
Web application components) to perform request processing. Scriptlets, one kind of scripting element,
contain code fragments that describe the action to be performed in response to a user request. Tag
libraries are part of the tag extension mechanism that enables programmers to create custom tags.
Such tags enable Web page designers to manipulate JSP content without prior Java knowledge.

In some ways, JavaServer Pages look like standard XHTML or XML documents. In fact, JSPs normally
include XHTML or XML markup. Such markup is known as fixed-template data or fixed-template text.
Fixed-template data often helps a programmer decide whether to use a servlet or a JSP. Programmers
tend to use JSPs when most of the content sent to the client is fixed-template data and little or none of
the content is generated dynamically with Java code. Programmers typically use servlets when only a
small portion of the content sent to the client is fixed-template data. In fact, some servlets do not
produce content. Rather, they perform a task on behalf of the client, then invoke other servlets or JSPs
to provide a response. Note that in most cases servlet and JSP technologies are interchangeable. As with
servlets, JSPs normally execute as part of a Web server.

When a JSP-enabled server receives the first request for a JSP, the JSP container translates the JSP into a
Java servlet that handles the current request and future requests to the JSP. Literal text in a JSP
becomes string literals in the servlet that represents the translated JSP. Any errors that occur in
compiling the new servlet result in translation-time errors. The JSP container places the Java statements
that implement the JSP's response in method _jspService at translation time. If the new servlet compiles
properly, the JSP container invokes method _jspService to process the request. The JSP may respond
directly or may invoke other Web application components to assist in processing the request. Any errors
that occur during request processing are known as request-time errors.

Overall, the request-response mechanism and the JSP life cycle are the same as those of a servlet. JSPs
can override methods jsplnit and jspDestroy (similar to servlet methods init and destroy), which the JSP
container invokes when initializing and terminating a JSP, respectively. JSP programmers can define
these methods using JSP declarations--part of the JSP scripting mechanism.

A Simple JSP Example
JSP expression inserting the date and time into a Web page.
//test.jsp
<html>
<head>

<meta http-equiv = "refresh" content = "60" />

<title>A Simple JSP Example</title>

<style type = "text/css">

.big { font-family: helvetica, arial, sans-serif;

Prepared by: Navin Sharma 20 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

font-weight: bold;
font-size: 2em; }
</style>
</head>
<body>
<p class = "big">Simple JSP Example</p>
<table style = "border: 6px outset;">
<tr>
<td style = "background-color: black;">
<p class = "big" style = "color: cyan;">
<l-- JSP expression to insert date/time -->
<%= new java.util.Date() %>
</p>
</td>
</tr>
</table>
</body
</html>

outpu

t _
l—J—mm-l-“—J || ASimple JSP Exarnple | !

localhost:51673/ Testing) 5P /testjsp.jsp

Simple JSP Example

Sun Aug 19 23:30:06 NPT 2012

As you can see, most of test.jsp consists of XHTML markup.In cases like this, JSPs are easier to
implement than servlets. In a servlet that performs the same task as this JSP, each line of XHTML
markup typically is a separate Java statement that outputs the string representing the markup as part of
the response to the client. Writing code to output markup can often lead to errors.That's whhy in such
scenarios JSP is preferred than Servlets.The key line in the above program is the expression

<%= new java.util.Date() %>
JSP expressions are delimited by <%= and %>. The preceding expression creates a new instance of class

Date (package java.util). By default, a Date object is initialized with the current date and time. When the
client requests this JSP, the preceding expression inserts the String representation of the date and time

Prepared by: Navin Sharma 21 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

in the response to the client. [Note: Because the client of a JSP could be anywhere in the world, the JSP
should return the date in the client locale's format. However, the JSP executes on the server, so the
server's locale determines the String representation of the Date.

We use the XHTML meta element in line 9 to set a refresh interval of 60 seconds for the document. This
causes the browser to request test.jsp every 60 seconds. For each request to test.jsp, the JSP container
reevaluates the expression in line 24, creating a new Date object with the server's current date and
time.

When you first invoke the JSP, you may notice a brief delay as GlassFish Server translates the JSP into a
servlet and invokes the servlet to respond to your request

Implicit Objects
Implicit objects provide access to many servlet capabilities in the context of a JavaServer Page. Implicit

objects have four scopes: application, page, request and session. The JSP container owns objects with
application scope. Any JSP can manipulate such objects. Objects with page scope exist only in the page
that defines them. Each page has its own instances of the page-scope implicit objects. Objects with
request scope exist for the duration of the request. For example, a JSP can partially process a request,
then forward it to a servlet or another JSP for further processing. Request-scope objects go out of scope
when request processing completes with a response to the client. Objects with session scope exist for
the client's entire browsing session. Figure below describes the JSP implicit objects and their scopes.

Prepared by: Navin Sharma 22 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Implicit object

Description

Application Scope

gpplication

Page Scope

config

exXception

out

pages

pageContext

response

Request Scope

request

Session Scope

A javax.servlet.ServlietContext object that
represents the container in which the 1SP executes.

A javax.servlet.ServletConfig object that
represents the JSP configuration options. As with
servlets, configuration options can be specified in a
Web application descriptor.

A java.lang.Throwable object that represents an
exception that is passed to a ISP error page. This
object is available only in a JSP error page.

A javax.servlet.jsp.JapWriter object that writes
text as part of the response to a request. This
object is used implicitly with JSP expressions and
achtions that insert string content in a response.

An Cbiect that represents the this reference for the
current JSP instance.

A javax.servlet.jsp.PageContext object that
provides JSP programmers with access to the
implicit objects discussed in this table.

An object that represents the response to the client
and is normally an instance of a class that
implements HttpServletResponse (package
javax.zsrvlet.htep). If a protocol other than HTTP
is used, this object is an instance of a class that
implements javax.servlet.ServlietResponae.

An object that represents the client request and is
normally an instance of a class that implements
HrrpServletRequest (package javax.servlet.horp). If
a protocol other than HTTP is used, this object is an
instance of a subclass of javax.servlet.Servlet-
Eequest.

session A javax.servlet.http.HttpSeasion object that
represents the client session information if such a
session has been created. This object is available
only in pages that participate in a session.
fig. JSP implicit objects.
Scripting

JavaServer Pages often present dynamically generated content as part of an XHTML document that is

Prepared by: Navin Sharma 23 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

sent to the client in response to a request. In some cases, the content is static but is output only if
certain conditions are met during a request (e.g., providing values in a form that submits a request). JSP
programmers can insert Java code and logic in a JSP using scripting.

Scripting Components
The JSP scripting components include scriptlets, comments, expressions, declarations and escape
sequences.

Scriptlets are blocks of code delimited by <% and %>. They contain Java statements that the container
places in method _jspService at translation time.

JSPs support three comment styles: JSP comments, XHTML comments and scripting-language
comments. JSP comments are delimited by <%-- and --%>. These can be placed throughout a JSP, but
not inside scriptlets. XHTML comments are delimited with <!-- and -->. These, too, can be placed
throughout a JSP, but not inside scriptlets. Scripting language comments are currently Java comments,
because Java currently is the only JSP scripting language. Scriptlets can use Java's end-of-line //
comments and traditional comments (delimited by /* and */). JSP comments and scripting-language
comments are ignored and do not appear in the response to a client. When clients view the source code
of a JSP response, they will see only the XHTML comments in the source code. The different comment
styles are useful for separating comments that the user should be able to see from those that document
logic processed on the server.

JSP expressions are delimited by <%= and %> and contain a Java expression that is evaluated when a
client requests the JSP containing the expression. The container converts the result of a JSP expression
to a String object, then outputs the String as part of the response to the client.

Declarations, delimited by <%! and %>, enable a JSP programmer to define variables and methods for
use in a JSP. Variables become instance variables of the servlet class that represents the translated JSP.
Similarly, methods become members of the class that represents the translated JSP. Declarations of
variables and methods in a JSP use Java syntax. Thus, a variable declaration must end with a semicolon,
asin

<%! int counter = 0; %>
Special characters or character sequences that the JSP container normally uses to delimit JSP code can
be included in a JSP as literal characters in scripting elements, fixed template data and attribute values

using escape sequences. Figure below shows the literal character or characters and the corresponding
escape sequences and discusses where to use the escape sequences.

Prepared by: Navin Sharma 24 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Escape
Literal sequence Description

<% <\% The character sequence <% normally indicates the
beginning of a scriptlet. The <\% escape sequence
places the literal characters <% in the response to
the client.

§> ER The character sequence %> normally indicates the
end of a scriptlet. The £\.> escape sequence places
the literal characters %> in the response to the

client.
' W As with string literals in a Java program, the escape
" W sequences for characters ',” and allow these
\ WA characters to appear in attribute values. Remember

that the literal text in a JSP becomes string literals
in the servlet that represents the translated JSP.

fig. JSP escape sequences

Scripting Example
//welcome.jsp
<IDOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Processing "get" requests with data</title>
</head>
<!l-- body section of document -->
<body>
<% // begin scriptlet
String name = request.getParameter("firstName");

if (name !=null)

{
%> <%-- end scriptlet to insert fixed template data --%>
<h1>
Hello <%= name %>,

Welcome to JavaServer Pages!
</h1>

<% // continue scriptlet

}// end if
else {

%> <%-- end scriptlet to insert fixed template data --%>

Prepared by: Navin Sharma 25 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

<form action = "welcome.jsp" method = "get">
<p>Type your first name and press Submit</p>

<p><input type = "text" name = "firstName" />
<input type = "submit" value = "Submit" />
</p>
</form>

<% // continue scriptlet

}// end else
%> <%-- end scriptlet --%>
</body>
</html>
Output
L :: Processing "get" requests with data | + ‘_
2 localhost51673/ Testing) 5P fwelcome jsp

Type vour first name and press Submit

navin
:: Processing "get" requests with data + _

6 localhost:51673,/ Testing)5P fwelcome. jsp¥firstMame=navin

Hello navin,
Welcome to JavaServer Pages!

Standard Actions

Standard actions provide JSP implementors with access to several of the most common tasks performed
in a JSP, such as including content from other resources, forwarding requests to other resources and
interacting with JavaBean software components. JSP containers process actions at request time.
Actions are delimited by <jsp:action> and </jsp:action>, where action is the standard action name. In
cases where nothing appears between the starting and ending tags, the XML empty element syntax <jsp:
action /> can be used. Figure below summarizes the JSP standard actions.

Prepared by: Navin Sharma 26 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Action

<jeprinclude>

<jsp:forwards>

<jspiplugin>

<jsp:param>r

JavaBean Manipulation

<jsp:usceBean>

<jsp:aetProperty>

<jsp:getPropertys>

<jsp:include> Action

JavaServer Pages support two include mechanisms-the <jsp:include> action and the include directive.
Action <jsp:include> enables dynamic content to be included in a JavaServer Page at request time. If the
included resource changes between requests, the next request to the JSP containing the <jsp:include>
action includes the resource's new content. On the other hand, the include directive copies the content
into the JSP once, at JSP translation time. If the included resource changes, the new content will not be
reflected in the JSP that used the include directive, unless that JSP is recompiled, which normally would
occur only if a new version of the ISP is installed. Figure below describes the attributes of action

<jsp:include>.

Prepared by: Navin Sharma

Description

Dynamically includes another resource in a JSP. As
the 1JSP executes, the referenced resource is
included and processed.

Forwards request processing to another ISP, servlet
or static page. This action terminates the current
JSP's execution.

Allows a plug-in component to be added to a page
in the form of a browser-specific cbject or embed
HTML element. In the case of a Java applet, this
action enables the browser to download and install
the Java Plug-in, if it is not already installed on the
client computer.

Used with the include, forward and plugin actions
to specify additional name-value pairs of information
for use by these actions.

Specifies that the J5P uses a JavaBean instance
{i.e., an object of the class that declares the
JavaBean). This action specifies the scope of the
object and assigns it an ID {i.e., a variable name)
that scripting components can use to manipulate
the bean.

Sets a property in the specified JavaBean instance.
A special feature of this action is automatic
matching of request parameters to bean properties
of the same name.

Gets a property in the specified JavaBean instance
and converts the result to a string for output in the
response.

fig. JSP standard actions

27 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Attribute Description

include. The resource must be part of the same Web

page Specifies the relative URI path of the resource to
application.
flush Specifies whether the implicit object cut should be

flushed before the include is performed. If true, the
JapWriter out is flushed prior to the inclusion, hence
you could no longer forward to another page later on.

The default value is falss.

fig. Action <jsp:include> attributes.

//index.jsp
<IDOCTYPE html>
<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>LN TECH PVT. LTD</title>

<style type = "text/css">
body
{

font-family: tahoma, helvetica, arial, sans-serif;

}

table, tr, td
{
font-size: .9em;
border: 3px groove;
padding: 5px;
background-color: yellowgreen;

}
</style>

</head>
<body>
<table style="width: 1280px; height: 675px">
<tr>
<td style = "width: 215px; text-align: center">
<img src="LN_Tech_logo.jpg"
width ="140" height = "93"
alt ="LN Tech Logo" />
</td>
<td>
<%-- include banner.html in this JSP --%>
<jsp:include page = "banner.html"

Prepared by: Navin Sharma 28

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

flush = "true" />
</td>
</tr>
<tr>
<td style = "width: 215px">
<%-- include toc.html in this JSP --%>
<jsp:include page = "toc.html" flush = "true" />
</td>
<td style = "vertical-align: top">
<%-- include clock.jsp in this JSP --%>
<jsp:include page = "clock.jsp"
flush = "true" />
</td>
</tr>
</table>
</body>
</html>

//banner.html
<IDOCTYPE html>
<html>
<head>
<title></title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<div style = "width: 580px">
<p>
LN Tech....a dedicated team of Engineers
 Working
in the field of Web

welcomes you to explore our site
</p>
<p>
admin@Intech.com

Baneshwor
Kathmandu, Nepal
</p>
</div>
</body>
</html>

//toc.html
<IDOCTYPE html>
<html>
<head>
<title></title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>

Prepared by: Navin Sharma 29

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

mailto:admin@lntech.com

<p>
Sign up

</p>

<p>
About us

</p>

<p>
Services
</p>

<p>
0ur works/Porfolios
<fa></p>

<p>
Jobs

<fa></p>

<p>
Home Page

<fa></p>

<p>Send questions or comments about this site to

admin@Intech.com

Copyright 2009-2012 by LN Tech Pvt Ltd.
All Rights Reserved.
</p>
</body>
</html>

//clock.jsp
<IDOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Clock Page</title>
</head>
<body>
<table>
<tr>
<td style = "background-color: blanchedalmond;">
<p class = "big" style = "color: black; font-size: 3em;
font-weight: bold;">

<%-- script to determine client local and --%>
<%-- format date accordingly --%>

Prepared by: Navin Sharma 30

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

http://theastutetech.com/index.php?page=about-us
http://theastutetech.com/index.php?page=services
http://theastutetech.com/index.php?page=our-works
http://theastutetech.com/index.php?page=jobs
http://theastutetech.com/
mailto:lntech.com

<%
// get client locale
java.util.Locale locale = request.getLocale();

// get DateFormat for client's Locale
java.text.DateFormat dateFormat =
java.text.DateFormat.getDateTimelnstance(
java.text.DateFormat.LONG,
java.text.DateFormat.LONG, locale);

%> <%-- end script --%>

<%-- output date --%>
<%= dateFormat.format(new java.util.Date()) %>
</p>
</td>
</tr>
</table>
</body>
</html>

//signup.jsp

<IDOCTYPE html>

<html>
<!l-- head section of document -->
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Sign up Page</title>
</head>
<!-- body section of document -->
<body>
<% // begin scriptlet

String name = request.getParameter("firstName");
if (name !=null)
{
%> <%-- end scriptlet to insert fixed template data --%>
<h1>
Hello <%= name %>,

Welcome to LN Tech!
</h1>

<% // continue scriptlet

}// endif
else {

Prepared by: Navin Sharma 31

Downloaded from CSIT Tutor

Unit-7: Servlets and JSP

%> <%-- end scriptlet to insert fixed template data --%>

<form action = "signup.jsp" method = "get">
<p>Type your first name and press Submit</p>

<p><input type = "text" name = "firstName" />
<input type = "submit" value = "Submit" />
</p>
</form>

<% // continue scriptlet
}// end else
%> <%-- end scriptlet --%>
</body>

</body>
</html> <!-- end XHTML document -->

output

o L S R AT

SR

August 20, 2012 12:51:15 AM NPT

Prepared by: Navin Sharma 32 Unit-7: Servlets and JSP

Downloaded from CSIT Tutor

Remote Method Invocation(RMI)

The Remote Method Invocation (RMI) model represents a distributed object application. RMI allows an
object inside a JVM (a client) to invoke a method on an object running on a remote JVM (a server) and
have the results returned to the client.

e Therefore, RMI implies a client and a server.
The server application typically creates an object and makes it accessible remotely.

e Therefore, the object is referred to as a remote object.

e The server registers the object that is available to clients.
One of the ways this can be accomplished is through a naming facility provided as part of the JDK, which
is called the rmiregistry. The server uses the registry to bind an arbitrary name to a
remote object. A client application receives a reference to the object on the server and then invokes
methods on it. The client looks up the name in the registry and obtains a reference to an object that is
able to interface with the remote object. The reference is referred to as a remote object reference.
Most importantly, a method invocation on a remote object has the same syntax as a method invocation
on a local object.

RMI Architecture

The interface that the client and server objects use to interact with each other is provided through
stubs/skeleton, remote reference, and transport layers. Stubs and skeletons are Java objects that act as
proxies to the client and server, respectively.

All the network-related code is placed in the stub and skeleton, so that the client and server will not
have to deal with the network and sockets in their code. The remote reference layer handles the
creation of and management of remote objects. The transport layer is the protocol that sends remote
object requests across the network.

A simple diagram showing the above relationships is shown below.

Client Server

Stub Skeleton

Remote Reference Layer Remote Reference Layer
Transport Layer Transport Layer

lNetwork Connection$

Developing a distributed application using RMI involves the following steps:
1. Define a remote interface

2. Implement the remote interface
3. Develop the server
4. Develop aclient
5. Generate Stubs and Skeletons, start the RMI registry, server, and client
Prepared by: Navin Kishor Sharma 1 RMI and CORBA

Downloaded from CSIT Tutor

The Remote Interface

The server's job is to accept requests from a client, perform some service, and then send the results
back to the client.The server must specify an interface that defines the methods available to clients as
a service. This remote interface defines the client view of the remote object.The remote interface is
always written to extend the java.rmi.Remote interface. Remote is a "marker" interface that identifies
interfaces whose methods may be invoked from a non-local virtual machine.

//Remotelnterface.java
import java.rmi.*;
public interface Remotelnterface extends Remote
{
public int add(int x,int y)throws RemoteException;

}

In the example above, add(int x,int y) is a remote method of the remote interface Remotelnterface. All
methods defined in the remote interface are required to state that they throw a RemoteException. A
RemoteException represents communication-related exceptions that may occur during the execution of
a remote method call.

The Remote Object

An implementation of the Remotelnterface interface is shown below.
//Serverimplements.java

import java.rmi.*;

import java.rmi.server.*;

import java.lang.String;

public class Serverlmplements extends UnicastRemoteObject implements Remotelnterface

{

public Serverimplements()throws RemoteException
{
super();
}
publicint add(int x,int y)
{
return (x+y);
}
}

The implementation is referred to as the remote object. The implementation class extends
UnicastRemoteObject to link into the RMI system. This is not a requirement. A class that does not
extend UnicastRemoteObject may use its exportObject() method to be linked into RMI. When a class
extends UnicastRemoteObject, it must provide a constructor declaring that it may throw a
RemoteException object. When this constructor calls super(), it activates code in UnicastRemoteObject,
which performs the RMI linking and remote object initialization.

Writing the Server
//AdditionServer.java

import java.rmi.Naming;

import java.rmi.registry.LocateRegistry;

Prepared by: Navin Kishor Sharma 2 RMI and CORBA

Downloaded from CSIT Tutor

public class Server

{
public static void main(String args[])
{
try
{
Serverlmplements s=new Serverimplements();
LocateRegistry.createRegistry(1099);
Naming.rebind("SERVICE",s);
System.out.printin("Server Started ");
}
catch(Exception e)
{
System.out.printin(e.getMessage());
}
}

}

The server creates the remote object, registers it under some arbitrary name, then waits for remote
requests. The java.rmi.registry.LocateRegistry class allows the RMI registry service (provided as part of
the JVM) to be started within the code by calling its createRegistry method.

This could have also been achieved by typing the following at a command prompt: start rmiregistry. The
default port for RMI is 1099. The java.rmi.registry.Registry class provides two

methods for binding objects to the registry.

Naming.bind("ArbitraryName", remoteObj); throws an Exception if an object is already bound under
the "ArbitrayName. "

Naming.rebind ("ArbitraryName", remoteObj); binds the object under the "ArbitraryName" if it does
not exist or overwrites the object that is bound.

The example above acts as a server that creates a Serverlmplements object and makes it available to
clients by binding it under a name of "SERVICE ".

NOTE: If both the client and the server are running Java SE 5 or higher, no additional work is needed on
the server side. Simply compile the Remotelnterface.java, Serverlimplements.java, and
AdditionServer.java, and the server can then be started. The reason for this is the introduction in Java
SE 5 of dynamic generation of stub classes. Java SE 5 adds support for the dynamic generation of stub
classes at runtime, eliminating the need to use the RMI stub compiler, rmic, to pre-generate stub classes
for remote objects.

¢ Note that rmic must still be used to pre-generate stub classes for remote objects that need to support
clients running on earlier versions.

Writing the Client
//Client.java
import java.rmi.*;
import java.io.*;
public class Client
{

public static void main(String args(])

{

Prepared by: Navin Kishor Sharma 3 RMI and CORBA

Downloaded from CSIT Tutor

try
{
String ip="rmi://127.0.0.1/SERVICE";
Remotelnterface s=
(Remotelnterface)Naming.lookup(ip);
System.out.printin("sum: "+ s.add(1,3));
}
catch(Exception e)
{
System.out.printin(e.getMessage());
e.printStackTrace();
}
}
}

RMI pros and cons

Remote method invocation has significant features that CORBA doesn't possess - most notably the
ability to send new objects (code and data) across a network, and for foreign virtual machines to
seamlessly handle the new object. Remote method invocation has been available since JDK 1.02, and so
many developers are familiar with the way this technology works, and organizations may already have
systems using RMI. Its chief limitation, however, is that it is limited to Java Virtual Machines, and
cannot interface with other languages.

Pros cons
Portable across many platforms Tied only to platforms with Java support
Can introduce new code to foreign JVMs Security threats with remote code execution, and

limitations on functionality enforced by security
restrictions.

Java developers may already have experience with | Learning curve for developers that have no RMI
RMI (available since JDK1.02) experience is comparable with CORBA

Existing systems may already use RMI - the cost | Can only operate with Java systems - no support
and time to convert to a new technology may be | for legacy systems written in C++, Ada, Fortran,
prohibitive Cobol, and others (including future languages).

Common Object Request Broker Architecture(CORBA)

CORBA, or Common Object Request Broker Architecture, is a standard architecture for distributed
object systems. It allows a distributed, heterogeneous collection of objects to interoperate.

The OMG

The Object Management Group (OMG) is responsible for defining CORBA. The OMG comprises over 700
companies and organizations, including almost all the major vendors and developers of distributed
object technology, including platform, database, and application vendors as well as software tool and
corporate developers.

CORBA Architecture

CORBA defines an architecture for distributed objects. The basic CORBA paradigm is that of a request for
services of a distributed object. Everything else defined by the OMG is in terms of this basic paradigm.

Prepared by: Navin Kishor Sharma 4 RMI and CORBA

Downloaded from CSIT Tutor

http://www.omg.org/

The services that an object provides are given by its interface. Interfaces are defined in OMG's Interface
Definition Language (IDL). Distributed objects are identified by object references, which are typed by IDL
interfaces.

The figure below graphically depicts a request. A client holds an object reference to a distributed object.
The object reference is typed by an interface. In the figure below the object reference is typed by the
Rabbit interface. The Object Request Broker, or ORB, delivers the request to the object and returns any
results to the client. In the figure, a jump request returns an object reference typed by the
AnotherObiject interface.

client obiect
obyect mplernaniation
AnotherObject jumpy

Rabbxt in long how _high)

interface Rabbit {

ORB

The ORB

The ORB is the distributed service that implements the request to the remote object. It locates the
remote object on the network, communicates the request to the object, waits for the results and when
available communicates those results back to the client.

The ORB implements location transparency. Exactly the same request mechanism is used by the client
and the CORBA object regardless of where the object is located. It might be in the same process with the
client, down the hall or across the planet. The client cannot tell the difference.

The ORB implements programming language independence for the request. The client issuing the
request can be written in a different programming language from the implementation of the CORBA
object. The ORB does the necessary translation between programming languages. Language bindings are
defined for all popular programming languages.

CORBA as a Standard for Distributed Objects

One of the goals of the CORBA specification is that clients and object implementations are portable. The
CORBA specification defines an application programmer's interface (API) for clients of a distributed
object as well as an API for the implementation of a CORBA object. This means that code written for one
vendor's CORBA product could, with a minimum of effort, be rewritten to work with a different vendor's
product. However, the reality of CORBA products on the market today is that CORBA clients are portable
but object implementations need some rework to port from one CORBA product to another.

CORBA 2.0 added interoperability as a goal in the specification. In particular, CORBA 2.0 defines a
network protocol, called IIOP (Internet Inter-ORB Protocol), that allows clients using a CORBA product
from any vendor to communicate with objects using a CORBA product from any other vendor. IIOP
works across the Internet, or more precisely, across any TCP/IP implementation.

Interoperability is more important in a distributed system than portability. IOP is used in other systems
that do not even attempt to provide the CORBA API. In particular, IIOP is used as the transport protocol
for a version of Java RMI (so called "RMI over IIOP"). Since EJB is defined in terms of RMI, it too can use
IIOP. Various application servers available on the market use IIOP but do not expose the entire CORBA
API. Because they all use IIOP, programs written to these different API's can interoperate with each
other and with programs written to the CORBA API.

Prepared by: Navin Kishor Sharma 5 RMI and CORBA

Downloaded from CSIT Tutor

CORBA Services

Another important part of the CORBA standard is the definition of a set of distributed services to
support the integration and interoperation of distributed objects. As depicted in the graphic below, the
services, known as CORBA Services or COS, are defined on top of the ORB. That is, they are defined as
standard CORBA objects with IDL interfaces, sometimes referred to as "Object Services."

Factory

e

HamingContext .} EventChannel

ORB

There are several CORBA services. Below is a brief description of each:

Service

Object life cycle

Naming
Events
Relationships

Externalization

Transactions

Concurrency Control

Property

Trader

Query

CORBA Products

Description

Defines how CORBA objects are created, removed, moved, and
copied

Defines how CORBA objects can have friendly symbolic names
Decouples the communication between distributed objects
Provides arbitrary typed n-ary relationships between CORBA objects

Coordinates the transformation of CORBA objects to and from

external media
Coordinates atomic access to CORBA objects

Provides a locking service for CORBA objects in order to ensure
serializable access

Supports the association of name-value pairs with CORBA objects

Supports the finding of CORBA objects based on properties
describing the service offered by the object

Supports queries on objects

CORBA is a specification; it is a guide for implementing products. Several vendors provide CORBA
products for various programming languages. The CORBA products that support the Java programming

language include:

Prepared by: Navin Kishor Sharma 6 RMI and CORBA

Downloaded from CSIT Tutor

ORB

The Java 2 ORB

VisiBroker for Java

OrbixWeb

Description

The Java 2 ORB comes with Sun's Java 2 SDK. It is missing
several features.

A popular Java ORB from Inprise Corporation. VisiBroker is also
embedded in other products. For example, it is the ORB that is
embedded in the Netscape Communicator browser.

A popular Java ORB from lona Technologies.

WebSphere

Netscape Communicator

A popular application server with an ORB from IBM.

Netscape browsers have a version of VisiBroker embedded in

them. Applets can issue request on CORBA objects without

downloading ORB classes into the browser. They are already

there.

Various free or shareware ORBs

CORBA implementations for various languages are available for

download on the web from various sources.

CORBA pros and cons

CORBA is gaining strong support from developers, because of its ease of use, functionality, and
portability across language and platform. CORBA is particularly important in large organizations, where
many systems must interact with each other, and legacy systems can't yet be retired. CORBA provides
the connection between one language and platform and another - its only limitation is that a language
must have a CORBA implementation written for it. CORBA also appears to have a performance increase
over RMI, which makes it an attractive option for systems that are accessed by users who require real-

time interaction.

Pros

Cons

Services can be written in many different
languages, executed on many different
platforms, and accessed by any language
with an interface definition language (IDL)

mapping

Describing services require the use of an interface
definition language (IDL) which must be learned.
Implementing or using services require an IDL mapping
to your required language - writing one for a language
thatisn't supported would take a large amount of work.

With IDL, the interface is clearly separated
from implementation, and developers can
create different implementations based on
the same interface.

IDL to language mapping tools create code stubs based
on the interface - some tools may not integrate new
changes with existing code.

CORBA supports primitive data types, and a
wide range of data structures, as parameters

CORBA does not support the transfer of objects, or code.

CORBA is ideally suited to use with legacy
systems, and to ensure that applications
written now will be accessible in the future.

The future is uncertain - if CORBA fails to achieve
sufficient adoption by industry, then CORBA
implementations become the legacy systems.

CORBA is an easy way to link objects and
systems together.

Some training is still required, and CORBA specifications
are still in a state of flux.

Prepared by: Navin Kishor Sharma

7 RMI and CORBA

Downloaded from CSIT Tutor

	unit 1
	Unit2and3_user interface with swing
	Unit4Database Connectivity
	Unit5Network Programming
	Unit6Java Beans
	Unit7Servlets and JSP
	Unit8RMI and CORBA

